首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
穿过天津地区张渤带的长86 km、NE向深地震反射剖面揭示了该区清晰的地壳精细结构图像和断裂的深浅构造特征,为研究张渤地震构造带的深部孕震环境和构造模式提供了地震学证据,对探讨晚中生代以来华北裂陷盆地的深部动力学过程及演化具有重要意义.结果表明,天津地区张渤带地壳以结晶基底反射TG为界,分为上下两部分;上地壳反射波组丰富,分层特征明显,界面起伏形态清楚,清晰地刻画出冀中坳陷新生代沉积分层、箕状沉积凹陷的底界、潮白河断裂、蓟运河断裂及丰台—野鸡坨断裂的几何结构;地壳内部结晶基底(TG)至Moho之间,显示出近于"反射透明"的地震波场特征,无明显震相,这与华北其他地区的深地震反射剖面结果明显不同;地壳厚度为30.0~34.5 km,总体变化趋势为中段地壳厚而南北端相对较薄,Moho在横向上显示出明显的不均匀和横向间断特征,在Moho被错断处存在两个明显的反射事件RA和RC,RA可能是软流圈热物质上涌的侧向残留物,叠层状反射震相RC则表现出壳幔过渡带特征;剖面揭示了2条错断Moho的超壳深大断裂(FD1和FD2)和9条上地壳断裂,深大断裂应是软流圈热物质上涌,造成上地幔隆起而形成的,上地壳断裂与地壳垂直运动及侧向引张力有关;超壳深断裂(FD1和FD2)为本区深部热物质的上涌与能量交换提供了通道,而与之对应的地壳浅部断裂(F3和F9),则为能量调整提供了可能的条件,断裂邻近区域可能是未来发生强震的地区,值得注意.  相似文献   

2.
利用文登—阿拉善左旗长观测距地震宽角反射/折射剖面东段资料,辩识出4组地壳震相和3组地幔盖层震相.采用二维射线追踪走时反演和正演拟合交替计算方法,得到了包括鲁东隆起和华北裂陷盆地在内的地壳和地幔盖层二维速度结构.研究结果表明:华北裂陷盆地基底深达6km以上,研究区壳内界面C1埋深约15km,C2界面深约25km,Moho面平均埋深约35km.上地壳速度6.0~6.1km·s-1,且横向变化较大;中地壳速度相对均匀约为6.2~6.4km·s-1;下地壳速度为6.5~7.0km·s-1,速度梯度较大.地壳平均速度与隆起和坳陷构造相关.研究区岩石圈底界面一般为75~80km,西端接近太行隆起构造时深至90km左右,向西呈明显加深趋势,地壳厚度呈现相同的增厚特征.地幔盖层上部速度8.0~8.2km·s-1,具明显正梯度特征.岩石圈平均速度在郯庐断裂带附近显著偏低.PmP和PLP震相存在不同程度的复杂性,意味着在本地区Moho界面和岩石圈界面有较为复杂的结构,可能具有一定厚度或过渡带性质.结合其他研究结果认为,地幔盖层和下地壳速度梯度、界面性质差异与华北克拉通破坏相关,意味着破坏是一个渐变、缓慢和不均匀的过程.郯庐断裂带附近的低速应是其为软弱带的证据.  相似文献   

3.
已有活动构造研究结果表明,天山北缘具有典型的大陆内部活动构造特征,表现为多排平行山体的背斜和逆断裂.为了研究乌鲁木齐坳陷区的地壳细结构、主要断裂展布和深、浅构造关系,2004年底,在乌鲁木齐西部的天山与准噶尔盆地之间的过渡带上,完成了一条近SN向的长度为78 km的深地震反射探测剖面.结果表明,该区地壳以双程走时9~10.5 s左右的强反射带为界分为上地壳和下地壳,上地壳厚约26~28 km,下地壳厚约23~25 km.双程走时5 s以上,反射层位丰富,构造形态清晰,且在剖面横向上具有明显不同的构造特征;在西山以南的区域,为一系列近东西向展布、南北向排列的逆冲背斜构造和一组自南向北逆冲的断裂,它们在深部均受到滑脱带的控制;在西山和王家沟一带,为一套向北陡倾的反射层系和一组沿层间滑动的断裂;剖面北部显示出了典型的沉积盆地图像,沉积盆地最深处约为10~12 km.双程走时6~9 s之间,为一些延续长度较短、反射能量较弱、且无规律可寻的凌乱反射,表明这部分地壳结构具有明显的“反射透明”性.Moho过渡带出现的时间位于双程走时14~17 s,对应壳幔过渡带厚度约为9~10 km.本区Moho面自北向南逐渐加深,剖面北部其深度约为50~52 km,在靠近北天山附近,其深度约为54~55 km.在剖面中部的西山附近,上、下地壳分界面反射和Moho过渡带反射变得模糊,且浅部地层还出现隆起和褶皱,推测与准噶尔盆地和天山的挤压过程有关.  相似文献   

4.
本文使用位于喜马拉雅东构造结地区布置的24个宽频带地震台站记录的远震波形数据,利用P波接收函数的方法研究了台站下方的Moho面深度、泊松比和地壳速度结构.结果表明,东构造结内Moho面深度呈现出自南西向北东方向逐渐变深的趋势,地壳厚度在54~60 km范围内,其中东久一米林走滑断裂带附近Moho面最浅,东构造结周围拉萨地块的Moho面深度在60 km以上.东构造结西部东久一米林走滑断裂带附近地壳泊松比较高.嘉黎断裂带南北两侧的泊松比差别较大,说明该断裂带两侧地壳结构存在显著差异.东构造结周边拉萨地块地壳内普遍存在低速层,分布在20~40 km深度范围内,厚度约为5~15 km.  相似文献   

5.
峨眉山大火成岩省是中国境内唯一被国际学术界认可的大火成岩省,普遍认为其形成与古地幔柱有关.以往对峨眉山古老地幔柱事件的识别,主要依靠地质地球化学等资料,缺少深部地球物理探测结果的约束和支持.为此,我们利用"丽江-攀枝花-清镇"剖面的人工源宽角地震数据重建该地区地壳速度结构,以便更好地理解峨眉山大火成岩省的深部结构与属性特征.前人根据茅口灰岩的剥蚀程度,将峨眉山大火成岩省从分布空间上划分为内、中、外三个带.跨越内、中、外带剖面地震探测结果显示:(1)沿剖面结晶基底的平均深度在2 km左右.(2)中地壳平均速度结构为6.2~6.6 km/s;内带局部呈现大约幅值为0.1~0.2 km/s的高速异常;下地壳速度结构,在内带为6.9~7.2 km/s;中带和外带偏低,为6.7~7.0 km/s;在内带和中带交界附近,受小江断裂带的影响,上、中、下地壳均呈现相对低速异常特征.(3)小江断裂两侧,尤其东侧地壳平均速度较低,且固结地壳的平均速度也较低,初步认为小江断裂至少向地下延伸至40 km以深,可能切穿整个地壳.(4)沿剖面Moho面深度,内带范围内深约47~53 km,中间呈上隆的特征;中带深约42~50 km,外带深约38~42 km,中带至外带,Moho面逐渐变浅.内带Moho面局部隆起、(固结)地壳呈现高速异常特征,可能是二叠纪地幔柱活动引起的底侵作用及岩浆上侵的结果,为古地幔柱的活动遗迹.  相似文献   

6.
龙门山地区的深部构造研究对于龙门山断裂带的深部驱动机制有重要的意义,但由于天然地震太站分布较少,难以获得水平分辨较高覆盖整个龙门山地区的深部构造图像.本文利用最新中德合作在龙门山断裂带两侧布置的天然地震阵列式台站数据,获取了各个台站的接收函数波形数据.通过对H-K叠加方法的研究和改进,并应用到各个台站的实际接收函数数据分析上,获得了断裂带两侧以及沿断裂带的地壳厚度和平均速度比的分布,通过进一步插值形成了覆盖整个龙门山地区的水平分辨20Km的Moho面三维形态.综合对应的速度比和深部物质赋存状态关系的研究,获得以下结论:四川盆地属于平均厚度35~40km冷地壳,松潘和夹金山等山区地壳则属于厚45~50Km的热地壳.而沿断裂带变化比较明显,南段类似高原地区有热而厚的地壳,中段为40~45 km的正常地壳,个别地形突起处深约50 km.北段则逐渐向盆地的冷而薄的地壳过渡,厚度从43~40 km逐渐变化.Moho面的分布特征表明了龙门山断裂带的中部和南部的差异,并推测其间存在一个明显的Moho面异常突起带,与该过渡带的余震的缺失存在一定的关联.  相似文献   

7.
云南西部地壳深部结构特征   总被引:10,自引:3,他引:7       下载免费PDF全文
在云南西部,穿过红河、小江断裂带完成了一条长360 km、呈北东向的深地震宽角反射/折射剖面.通过对该测线的观测资料进行一维、二维模拟解释,得到了沿剖面的二维地壳速度模型.研究结果显示,沿测线Moho界面埋深横线变化大,其西南侧Moho埋深约35 km,东北侧Moho最大埋深可达43 km.沿剖面从西南到北东方向,地壳平均P波速度从5.9 km/s逐渐增加到6.13 km/s,但显著低于全球大陆平均值.结合以往的接收函数和面波联合反演结果,我们推算沿测线从西南到东北,其下方地壳泊松比介于0.23~0.25之间.剖面西南侧上地壳具有异常低的P波速度和泊松比,暗示其下方上地壳以α-相长英质组分为主;而剖面东北上地壳相对较高的P波速度和泊松比则暗示其物质组成以花岗岩-花岗闪长岩为主.研究区下地壳的P波速度和泊松比分别介于6.25~6.75 km/s和0.24~0.26 km/s之间,暗示其上部组成以花岗岩相的片麻岩为主,而下部组成则以角闪石类岩石为主.红河断裂两侧地壳速度显著不同,从浅到深其速度差异逐渐变弱,但红河断裂两侧地壳厚度变化较大.而小江断裂下方两侧地壳速度和地壳厚度变化并没有红河断裂那么明显.  相似文献   

8.
银川断陷盆地地壳结构与构造的地震学证据   总被引:12,自引:6,他引:6       下载免费PDF全文
通过跨银川断陷盆地,完成了一条长68.9 km的高分辨深地震反射探测剖面,首次获得了银川盆地地壳精细结构、地堑型断陷盆地深部断裂系(黄河断裂、银川断裂、贺兰山东麓断裂)特征及深浅构造关系.结果表明:银川断陷盆地上地壳为双程走时8 s(深度约20 km)反射面以上的区域,上地壳上部地层层位丰富,地层分段连续性较好,上地壳下部地层分层特征不明显,地质构造简单;下地壳(8~13 s)反射能量较弱,反射同相轴不明显;下地壳下部壳幔过渡带(13 s附近)由一组能量较强、持续时间较长(1.5 s)的反射波组组成,厚度约4.5 km.芦花台断裂、银川断裂分别于12~12.5 km、18~19 km深处交汇于贺兰山东麓断裂,贺兰山东麓断裂于28~29 km深处交汇于黄河断裂,黄河断裂为错断Moho面的深大断裂,银川地堑为以黄河断裂为主,其他断裂为辅组合而成的负花状构造.根据贺兰山东麓断裂和银川断裂的相互关系,认为贺兰山东麓断裂对1739年平罗—银川8级地震起主要控制作用.  相似文献   

9.
印度地壳与岩石圈地幔的俯冲前缘和俯冲形态,对认识高原构造变形、隆升机制有重要意义.本文基于青藏高原西缘分布的流动宽频带地震台站(TW-80测线和Y2台网)记录的远震波形数据,通过接收函数H-κ网格搜索与CCP叠加方法,对研究区地壳结构进行成像.结果显示:(1)研究区西侧北西—南东向剖面(剖面1,2),狮泉河逆冲断裂带以南,深度67~80 km范围内均观测到连续的Moho界面;40~55 km范围内存在另一组横向上可连续追踪的界面,其形态与之下Moho面横向变化趋势近乎平行;(2)研究区东侧剖面3下方,Moho面从南端喀喇昆仑断裂带下方向北逐渐加深,在雅鲁藏布江缝合带附近增至大约67 km,进入拉萨块体至台站WT20和WT03下方至最深75~80 km,然后向北有所抬升.基于成像结果和岩石学研究成果推测藏南块体下方,自西向东均存在俯冲印度板块下地壳的榴辉岩化现象,可以用来指示印度板块地壳尺度的俯冲前缘,其在青藏高原西部(约80°E)位于班公湖—怒江缝合带附近,向东逐步递减至拉萨块体中部.  相似文献   

10.
渤海湾及其邻区壳幔速度结构研究与综述   总被引:26,自引:0,他引:26       下载免费PDF全文
利用渤海湾及其邻区的10多条地震测深剖面段观测资料,对部分剖面进行二维射线追踪、走时拟合及合成地震图计算,获得了本区地壳上地幔速度结构.结果表明,地壳上地幔结构在纵向和横向上具有明显的不均匀性.在冀中坳陷东北部的永清附近、黄骅坳陷的渤海湾和济阳坳陷的垦利附近存在上地幔隆起,隆起处的地壳厚度分别约为31, 28和29 km.根据地震波动力学及运动学特征和二维速度结构中的地震界面与速度等值线起伏变化,推测该区有3条地壳深断裂带,在地壳深断裂带一侧或两侧上地壳存在5.90~6.10 km/s的低速层(体).   相似文献   

11.
太行山东缘汤阴地堑地壳结构和活动断裂探测   总被引:7,自引:1,他引:6       下载免费PDF全文
采用深、浅地震反射和钻孔地质剖面相结合的探测方法,对太行山东缘汤阴地堑的地壳结构和隐伏活动断裂进行了研究.结果表明,该区地壳厚度约36~42 km,莫霍面从华北平原区向太行山下倾伏.汤阴地堑是一个受汤东断裂控制的半地堑构造,其基底面形态与莫霍面展布呈"镜像"关系.汤东断裂是1条继承性的隐伏活动断裂,该断裂向上错断了埋深约20 m的中更新世晚期地层,向下延伸至上地壳底部.综合分析深地震反射和已有深地震宽角反射/折射剖面结果,发现深地震反射剖面上的中-下地壳强反射层和壳幔过渡带反射,与深地震宽角反射/折射剖面上出现的中-下地壳正负速度梯度变化层有着较好的对应关系,这表明本区中-下地壳和壳幔过渡带可能为一系列速度递变层或高低速物质的互变层,埋深约15~16 km的强反射带为上地壳与中-下地壳的转换带,壳幔过渡带的底界为地壳与地幔的分界.研究结果为深入理解该区的深部动力学过程、分析研究深浅构造关系、评价断裂的活动性提供了依据.  相似文献   

12.
华北克拉通北缘—西伯利亚板块南缘的地壳速度结构特征   总被引:4,自引:2,他引:2  
华北克拉通北缘—西伯利亚板块南缘(张家口—中蒙边界)的深地震测深剖面长600 km,跨越华北板块、内蒙造山带和西伯利亚板块.沿测线采用8个1.5t的爆炸震源激发地震波,使用300套数字地震仪接收,取得了高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳内的反射波(P3)、中地壳底面的反射波(P4)、下地壳内的反射波(P5,仅在镶黄旗—苏尼特右旗下方出现)和莫霍面的反射波(Pm)等6个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在华北板块与内蒙造山带之间,内蒙造山带与西伯利亚板块之间,上地壳中存在明显的高速度局部变化,在地表发育大量的古生代花岗岩体、超基性岩体.(2)在中下地壳华北板块南缘的地震波速度大,为6.3~6.7 km/s,西伯利亚板块北缘的速度小,为6.1~6.7 km/s,且界面比较平缓.原因是在内蒙造山带内地壳的缩短和隆升造山引起了中下地壳界面的剧烈起伏,不同海陆块的拼合和物质交换导致了不同区域速度的不均匀性.(3)莫霍面在赤峰断裂带(F2)以南和索伦敖包—阿鲁科尔沁旗断裂带(F4)以北较为平缓,平均深度为40~42 km.在F2—F4之间呈双莫霍面,莫霍面1明显上隆,深度为33.5 km,层速度为6.6~6.7 km/s.莫霍面2明显下凹,在西拉木伦河断裂带(F3)下方,最深达到47 km,速度达到最大为6.8~6.9 km/s,这可能是由壳幔物质混合引起的.依据莫霍面的特点,本文认为双莫霍面以南为华北板块北缘,以北为西伯利亚板块南缘,拼合位置在赤峰断裂带(F2)与索伦敖包—阿鲁科尔沁旗断裂带(F4)之间的区域.  相似文献   

13.
云南省西南部,发育一组由不同断裂组成的北东向断裂构造带,沿这些断裂数十年来相继发生过多次强震.本文以其中的南汀河西支断裂为研究对象,采用深地震反射剖面方法,获得了断裂及两侧地壳精细结构和构造图像.探测结果表明:研究区纵向上,分为上、下两层地壳结构,总厚度约为31.25~35.6 km;横向上,以南汀河西支断裂为界,两侧反射特征差异较大,分别以弧状或倾斜反射波组为主·测线经过地区,莫霍面反射特征较为清晰,为2-3个反射同相轴组成的反射条带.南汀河西支断裂为一个由5条分支断层组成的断裂带,呈花状结构,反映了一种走滑挤压的应力状态.断裂带下方,存在一条切穿下地壳及莫霍面并延伸至上地幔的深大断裂·这种深、浅断裂共存的构造格局是控制南汀河地区地震孕育和发生的重要因素之一.  相似文献   

14.
INTRODUCTIONQuanzhou Citylocates on the southeast coast of Fujian Province .Tectonically,it locates in thevolcanic fault depression zone in East Fujian betweenthe Wuyi-Daiyunfolded doming-upregion of theSouth China block and the depression zone of the Taiwan Straits . Being on the north segment of thesoutheast seismic belt of China , many destructive earthquakes inthe history affected the area and theregional seismicityis closelyrelated withfaulting.Inthe Quanzhou basin,large-scalelo…  相似文献   

15.
为了实验大容量气枪震源陆地水体流动激发反射地震探测效果,在长江中下游安徽省铜陵段,采用气枪船长江航道流动激发、沿江岸布设反射地震仪器接收的非纵弯线工作方式,得到了反映测线经过地区地壳深部结构和构造特征的反射地震数据。原始资料信噪比较低,但部分资料不同部位仍可辨认出来自地壳及莫霍面反射波组。就传播距离而言,地震波传播的水平距离最大可达21km,垂直深度可达30km以上。在数据处理中,根据原始资料特点,针对性采用了非纵弯线面元定义、三维层析静校正、叠前多域去噪及组合反褶积技术,最终得到的叠加时间剖面上具有丰富的壳内反射波组。结果显示,测线经过地区的地壳结构为双层结构,总厚度为30.0~36.0km。上地壳呈现隆坳相间的反射特征,下地壳存在多组叠层状弧型反射波组,莫霍面反射特征清晰,由2~3个反射同相轴组成,呈现SW端向NE段抬升的形态。剖面经过地区存在一个切穿下地壳和莫霍面的深部断裂,应该是长江深断裂的反映。研究结果充分说明,大容量气枪震源可应用于陆地流动水体地壳精细结构的深地震反射探测。  相似文献   

16.
银川地堑地壳挤压应力场:深地震反射剖面   总被引:6,自引:4,他引:2       下载免费PDF全文
银川地堑位于南北地震带北段,地质结构复杂,活动构造发育.为了调查银川地堑的构造特征及断裂分布情况,布设了NW向跨银川地堑的深地震反射剖面,首次获得银川地堑地壳的精细结构.结果表明,银川地堑具有典型的拉张-挤压型沉积盆地特征,上地壳反射连续性好,层位丰富,能量强,断裂发育.下地壳和莫霍面记录了挤压与拉张的发展过程.奠霍面...  相似文献   

17.
By using moving average method to separate Bouguer gravity anomaly field in Sichuan-Yunnan region, we got the low-frequency Bouguer gravity anomaly field which reflects the undulating of Moho interface. The initial model is obtained after seismic model transformation and elevation correction. Then, we used Parker method to invert the low-frequency Bouguer gravity anomaly field to obtain the depth of Moho interface and crustal thickness in the area. The results show that the Qinghai-Tibet block in the northwest of the study area deepens and thickens from the edge to the interior, with the depth of Moho interface and the crust thickness of about 52~62km and 54~66km, respectively. The depth of Moho interface in Sichuan Basin is about 38~42km. In Sichuan-Yunnan block, the depth of Moho interface is about 42~62km from southeast to northwest. Beneath the West Yunnan block, west of the Red River fault zone, the Moho depth is about 34~52km from south to north. The Longmen Mountains and Red River fault zone are the gradient zone of the Moho depth change. Along the Red River fault zone, the depth difference of Moho interface is increasing gradually from north to south. No obvious uplift is found on the Moho interface of Panzhihua rift valley. The depth of Moho interface distribution in Sichuan and Yunnan is obviously restricted by the collision between the Indian plate and the Eurasian plate and the lateral subduction of the Indo-China peninsula. The mean square error of the depth of Moho interface is less than 1.7km between the result of divisional density interface inversion and artificial seismic exploration. At the same time, we compared the integral with divisional inversion result. It shows that:in areas where there is obvious difference between the crust velocity and density structure in different tectonic blocks, the use of high resolution seismic exploration data as the constraints to the divisional density interface inversion can effectively improve the reliability of inversion results.  相似文献   

18.
The study area is located at the junction of the northern margin of the Qinling orogenic belt and the southern margin of the North China Block. In order to study the fine crustal structure and the deep-shallow structural features of faults in this area, we conducted deep seismic reflection profiling with the seismic profile of 100km long, directing NE-SW in Zhumadian City, Henan Province, and got clear lithospheric structure images along the profile. As regards the data acquisition, we applied the geometry of 25m group interval, 1000 recording channels and more than 60 folds. Seismic wave exploding applies the 30kg shots of dynamite source with the borehole depth of 25m. The shot interval is 200m. In data processing, we focused on improving the signal-to-noise ratio. Data processing methods mainly include first break removal, tomographic static correction, abnormal amplitude elimination, amplitude compensation, pre-stack denoising, surface consistent deconvolution, velocity analysis, several iterations of the residual static correction, dip moveout, post-stack time migration and post-stack denoising, etc. The profile with high signal-to-noise ratio was obtained. The reflection wave group characteristics is obvious in the crust, which reflects abundant information about geological structure. Along the profile, the crust is characterized by double-layer reflection structure, and the Moho surface is composed of a series of laminated arc-shaped strong reflections. The thickness of the upper crust is about 14.8~20.7km, and the total thickness of the crust is about 32.0~35.1km. The upper crust is dominated by the inclined, densely stratified or arc-shaped reflections. The lower crust is dominated by arc-shaped and inclined reflection, and there is a reflective transparent zone under the Moho surface. The reflection sequences with different directions and shapes in the upper crust constitute the nappe structure in southwest segment and the structural model of two concaves with one uplift in NE segment, which correspond to the north Qinling nappe, Zhumadian-Huaibin depression, Pingyu-Xiping uplift and a secondary depression, respectively. There are abundant arc-shaped reflection sequences in the lower crust, which may represent multi-stage magmatic activities. The deep seismic reflection profile shows that faults in the upper crust are well developed. According to the characteristics of reflected wave field in the profile, four groups of fault structure which contain ten faults with different scales are interpreted. Among them, faults FP1, FP2 and FP3 constitute the thrust fault system in the northern margin of Qinling Mountains, and FP5 and FP7 are boundary faults of Zhumadian-Huaibin depression. These faults are all developed within the upper crust. In addition, the Fault FPM is a large fault that cuts through the lower crust and Moho surface. The deep seismic reflection profile reveals the crustal structure and deep-shallow structural features of faults at the junction of the northern margin of the Qinling orogenic belt and the southern margin of the North China block, which provides seismological evidence for the analysis of structural differences, the deep earth's interior processes and deep-shallow structural relationships between the Qinling-Dabie orogenic belt and the southern margin of the North China block. The lower crust of the study area is divided into two parts by deep faults that dislocate the Moho surface. These two parts have distinct reflective structures, suggesting that the area has experienced intense complex tectonic movements. The faults in the upper crust control the formation of basin-mountain structure and stratigraphic deposition of this area. And deep faults in the crust that disrupt Moho surface create conditions for the upwelling and energy exchange of deep materials. All of these have regulated the composition of material and the distribution of energy in the crust. The deep faults cutting through the lower crust and Moho surface and the south-dipping arc-shaped and inclined strong reflection sequences developed in the lower crust should indicate the large-scale subduction of the southern margin of the North China block towards the south-trending Qinling orogenic belt.  相似文献   

19.
We present new seismic velocity models of the crust and uppermost mantle along two refraction and wide-angle reflection profiles in the southern Fennoscandia: the Pribalt and 1-EB profiles. Some new results obtained along the Coast and the Baltic Sea profiles are also presented. The intercept time method and ray tracing are used for the modeling. The study shows that the lateral variations are small in the velocity structure of?? the crust up to the depth of 20?C25 km. The most significant lateral variations are observed in the Moho discontinuity topography and in the seismic velocities in the lower crust. In Paleoproterosoic Svekofennian domain, besides the well-known Moho depression in southern Finland, another Moho depression is revealed in the region from the Gotland Island to the Gulf of Riga. We suggest that this depression can correspond to the unknown crustal unit (we call it the Gotland-Riga belt). The Moho depth increases from the average of 40?C45 km to 55 km in this belt. The Moho depression is filled by the matter with velocities of 6.8?C7.1 km/s. Deep faults inclined to the north and strong variations of the mantle velocities are typical for the uppermost mantle of the Gotland-Riga belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号