首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
A major slip and thrust belt within the eastern Jiaodong Peninsula is located at the eastern terminal of the Qinling-Dabie-Sulu orogenic belt between the Sino-Korea Block and Yangtze Block. Although a lot of isotope chronologic data have been obtained regionally, little structural chronological research has been conducted in this region and this paper corrects that. Syn-deformational minerals were system-atically selected from samples of the NE-ENE trending transpressional shear zones and transpres-sional nappes and carefully analysed using 40Ar/39Ar methods. Two tectonic events were defined with the first event resulting from early movement of transpressional nappes around 190 Ma ago. This ac-cords with the period of syn-orogenic sinistral slip of the Tan-Lu faults and clockwise shear in the Eastern Qinling-Tongbaishan part of the Qinling-Dabie-Sulu orogenic belt. The second event involved strikeslip thrust movement of deep shear zones between 130Ma and 120Ma. This resulted from the onset of Mesozoic tectonic conversion in the eastern Jiaodong Peninsula. The sinistral strikeslip-thrusting in Jiaodong Peninsula and the extensional tectonism (toward ESE) in Liaodong Peninsula probably resulted in the clockwise rotation of Korea Peninsula in late Mesozoic.  相似文献   

2.
The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core complex with a three-layered structure: (1) the upper plate is constituted by the Cretaceous supradetachment basin and Paleoproterozoic basement; (2) the lower plate comprises the Neoarchean high-grade metamorphic complexes and late Mesozoic granitic intrusions; and (3) the two plates are separated by a master detachment fault. A series of late NEN-oriented brittle faults superimposed on and destructed the early MCC. Petrology, geometry, kinematics, macro- and micro-structures and quartz c-axis fabrics imply that the MCC has a progressive exhumation history from middle-lower to subsurface level (via middle-upper crustal level) under the nearly WNW-ESE regional extensional regime. We present structural and geochronological evidence to constrain the exhumation of the Queshan MCC from ca. 135 to 113 Ma. Based on the comprehensive analysis of the different patterns of extensional structures in the Jiaodong and Liaodong Peninsula, we have defined the Jiao-Liao Early Cretaceou extensional province and further divided the crustal extension of it into two stages: the first stage was the intense flow of the middle-lower crust and the second stage was the extension of the middle-upper crust. Combining the tectonic setting, the lithosphere thinning in the Jiao-Liao Early Cretaceous extensional province can be considered a typical model for the response of crust-mantle detachment faulting under regional extension in East Asia.  相似文献   

3.
合肥盆地和郯庐断裂带南段深部地球物理特征研究   总被引:16,自引:1,他引:16       下载免费PDF全文
根据重、磁、电、震资料联合反演和综合解释,研究了合肥盆地和郯庐断裂带南段深部结构特征和构造样式. 合肥盆地呈现深部印支面以下为逆冲断层、以上为张性正断层的构造样式,盆地构造反转发生在晚侏罗世,早白垩世是裂陷盆地形成的主要时期,早白垩世晚期合肥盆地发生构造反转,发育冲逆、冲推覆构造. 郯庐断裂带南段表现为“上正下逆”的构造变形样式和正花状构造特征,并经历了复杂的挤压走滑-引张正断层变形过程.  相似文献   

4.
Mesozoic doming extensional tectonics of Wugongshan, South China   总被引:4,自引:0,他引:4  
Wugongshan in Jiangxi Province, China was a Mesozoic granitic dome-type extensional tectonics that is composed of metamorphic core complexes, ductile and brittle shear-deformed zones distributed around Mesozoic granites. Within it, the foliation defines an E-W elliptical shape and bears S-N stretching lineations. The axial part is located in Hongjiang-Wanlongshan area and occupied by oriented granites with coaxial symmetric shear fabrics. The southem and northern flanks, including rocks in the Anfu Basin to the south and the Pingxiang Basin to the north, display top-to-south and top-to-north motions, respectively. The ductile and brittle structures indicate a geometric and kinematic consistency. The extensional tectonics is developed on a Caledonian metamorphic basement and is unconformably covered by Late Cretaceous red beds. Isotopic ages on muscovite, biotite and whole rock by40Ar-39Ar, K-Ar and Rb-Sr suggest that the Wugongshan extensional doming began from the Triassic and ended in the Late Cretaceous. A geodynamic model is discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 49632080, 49572141)  相似文献   

5.
Hercynian basement rocks and Mesozoic ophiolites of the Calabria-Peloritani terrane drifted in the present position during the opening of western Mediterranean basins (namely Liguro-Provençal and Tyrrhenian basins) since the Oligocene. Basement rocks were partly involved by Alpine (late Cretaceous—Eocene) deformation and metamorphism before the onset of the drifting process. Even though the kinematics of the Alpine deformation in Calabria has been already defined, restoration of structural and kinematic data to the original position and orientation before the opening of the western Mediterranean has never been performed. In this work we present new structural and petrological data on a major tectonic contact of Alpine age exposed in central Calabria (Serre Massif). Structural and kinematic data are then restored at the original orientation in the early Oligocene time, to allow a correct tectonic interpretation.In the Serre Massif the Hercynian basement is sliced into three nappes emplaced during the Alpine orogeny. The upper nappe is formed by a nearly continuous section of the Hercynian crust, consisting of medium- to high-grade metamorphic rocks in the lower portion. The intermediate nappe mainly consists of orthogneisses, whereas the lower nappe is chiefly composed of phyllites. The contacts between the Alpine nappes are outlined by well developed mylonitic and cataclastic rocks. The Curinga-Girifalco Line is a well exposed shear zone that overprints mainly metapelitic rocks of the upper nappe and granitoid orthogneisses of the intermediate nappe. Mylonites of the intermediate nappe typically show overgrowths on garnet and hornblende with grossular-rich and tschermakitic composition, respectively. The Alpine mineral assemblage indicates that deformation took place in epidote-amphibolite facies at pressures ranging from 0.75 to 0.9 GPa.In the investigated area mylonites strike roughly WNW–ESE, with shallow dips towards SSW. Kinematic indicators in mylonites are mostly consistent with a top-to-the-SE shear sense in the present geographic coordinates. The mylonitic belt is affected by later extensional faults outlined by South-dipping cataclasite horizons. Published geochronological data indicate that mylonites and cataclasites developed in Eocene and early Miocene times, respectively.Considering rotational parameters coming from paleomagnetic studies and large-scale palinspastic reconstructions, the shear sense of the Curinga-Girifalco Line has been restored to the early Oligocene position and orientation. Through restoration a top-to-the-S shear sense is obtained. This result is in striking agreement with the convergence direction between Africa and W-Europe/Iberia during Eocene, computed from the North Atlantic magnetic anomalies. Our geodynamic reconstruction, combined with structural and petrological evidence, allows to relate the Curinga-Girifalco mylonites to a thrust related to the southeastern front of the double-verging Alpine chain. The adopted method could be used also for other exotic terranes, such as the Kabylie or the Corsica-Sardinia, to better constrain geometry and evolution of the southern Alpine belt.  相似文献   

6.
Abstract This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of-4.8‰-7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demon  相似文献   

7.
—Extreme cooling rates (500 °C/m.y.) during the late stage, 22–18 Ma, orogenic evolution of the Alpine Betic-Rif belt are suggested to result from rapid exhumation caused by tectonic extrusion and concomitant extensional tectonics. The extrusional/extensional tectonic setting is controlled by the SW-NE trending break-off scar left in the lithosphere of the Alborán Sea and SE Spain after detachment of a lithospheric slab. The extruded material represents the collisional crustal nappe pile (together with fragments of underlying mantle, such as the Ronda peridotites) and the cause of the extrusion is the thermal softening within the crustal section during and after collision. The extrusion/extension took place under the influence of a NW-SE directed compressive regime, perpendicular to the collisional belt. At the same time the sub-lithospheric mantle still showed the E-W compressive regime of the collisional stage. The Alpine tectono-metamorphic evolution of the Betic-Rif belt in the W Mediterranean thus comprises two main stages: (1) continental collision with formation of primary nappes and high-pressure metamorphic parageneses, (2) tectonic extrusion with vertically directed tectonics (high pressure, very rapid decompression) and extensional tectonics with roughly horizontal, lateral transport and final emplacement of the extruded mélange in the form of a stack of detachment sheets (low pressure, very rapid cooling). This model for the Betic-Rif may offer important constraints to all rapidly exhumed convergent terranes.  相似文献   

8.
Samples of mylonite, ultramylonite and phyllonite were collected from 5 localities in the Anhui part of the Tan-Lu fault zone for40Ar/39Ar chronological studies. Among them 4 samples from 3 localities on the eastern margin of the Dabie orogenic belt yielded40Ar/39Ar plateau ages of 128 —132 Ma; and 2 samples from the western margin of the Zhangbalin uplift and eastern margin of the Bengbu uplift gave the same40Ar/39Ar plateau ages of 120 Ma. Isochron analyses and other lines of evidence suggest that the data are reliable. The data are interpreted as cooling ages of sinistral strike-slip deformation of the Tan-Lu fault zone. The younger ages from the north might be related to slower strike-slip rising. These results indicate that the large-scale left-lateral displacement in the Tan-Lu fault zone took place in the Early Cretaceous, rather than in Late Triassic (Indosinian) as proposed by some geologists. Therefore, this fault zone is an intracontinental wrench fault rather than a transform fault or suture line developed during formation of the Dabie orogenic belt.  相似文献   

9.
The zircon Sensitive High Resolution Ion Microprobe (SHRIMP) results show that granitoid intrusions in Zhaoye Gold Belt were emplaced at two periods of Mesozoic: Linglong and Luanjiahe types of granitic intrusions were emplaced between 160 Ma and 150 Ma (late Jurassic); Guojialing type of granodioritic intrusions, 130 Ma and 126 Ma (early Cretaceous). All the three types contain at least two major generations of inherited zircons with Precambrian (>650 Ma) and early Mesozoic ages (200–250 Ma), respectively. The former suggests that these plutonic rocks are of crustal origin and that Precambrian basement with component of sialic crust up to 3.4 Ga old (Middle Archean) exists in the region. The presence of abundant inherited zircons with early Mesozoic age indicates that the Precambrian basement was affected by a major tectono-thermal event, that is the collision of the North and South China blocks, at 250 Ma to 200 Ma. SHRIMP results also indicate that the gold mineralization in the region took place between 126 Ma and 120 Ma. Project supported by the Sino-Australian Economic and Technical Fund.  相似文献   

10.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

11.
皖南谭山岩体的锆石定年及地质意义   总被引:1,自引:0,他引:1  
皖南地区广泛分布燕山期岩浆岩,但其年代学方面的工作较为薄弱。为厘定该地区燕山期岩浆岩年代学格架,本文利用LA-ICP-MS锆石U-Pb定年方法对皖南谭山岩体的正长花岗岩进行了锆石U-Pb年代学研究,两个样品的206Pb/238U加权平均年龄分别为128.5±1.7Ma和128.3±1.5Ma,基本一致,为早白垩世岩浆活动的产物。结合本地区高精度年代学数据,皖南地区中生代岩浆岩可划分为三个峰期:第一峰期为142~139Ma;第二峰期为133~130Ma;第三峰期为128~125Ma。  相似文献   

12.
晚中生代以来,华北克拉通东部经历了以岩石圈减薄作用为主要特征的大规模岩石圈破坏.在此背景下,位于华北克拉通东部的胶东地区形成了大规模的伸展构造、广泛发育的花岗岩类侵入体和巨量的金矿化.为揭示胶东地区控矿构造在上地壳层次的发育特征及其与金成矿之间的联系,本文基于跨胶东半岛的NWW-SEE向短周期密集地震台阵剖面,开展了背景噪声成像研究,获得了胶东地区8km以浅的上地壳S波速度结构,其主要特征为:(1)胶东地区沉积层较薄,基底平均深度为1~2km左右;(2)垂向速度梯度显示胶西北基底/浅层高速间断面错断特征显著,与主要拆离断层对应关系良好,且相对速度扰动显示沿主要拆离断层发育SE倾向的条带状低速异常;(3)牟乳成矿带下方S波速度具有横向分块特征,与五莲—烟台等控矿断裂的陡倾特征吻合,且东部苏鲁造山带上地壳平均速度较胶西北地区明显偏高.综合本文成像结果及已有地质、地球物理资料,我们认为胶西北成矿带的控矿构造深部以大规模拆离断层为主要特征,而东部牟乳成矿带则以高角度的脆性(走滑)断裂为主,故控矿断裂构造的差异可能是胶东成矿区域性差异的主要控制因素.  相似文献   

13.
The Anjiayingzi gold deposit in Chifeng County, Inner Mongolia is located in the central part of the gold mineralization belt of the northern margin of the North China Craton (NCC), and is adjacent to the Paleozoic Inner Mongolia-Da Hinggan Mountains orogenic belt in the north. The Chifeng-Kaiyuan fault, which separates the NCC from this orogenic belt, is considered to be a regional ore-controlling structure. The Anjiayingzi gold deposit is a mediate-size quartz lode-gold deposit and is hosted by the Anjiayingzi quartz monzonite that was emplaced into the basement composed of early Precambrian gneisses. Rhyolitic and porphyritic dikes are generally associated with the gold mineralization. Zircon U-Pb analyses suggest that the Anjiayingzi granite was emplaced from 132 Ma to 138 Ma, while the rhyolitic dikes that occupy the same fracture system as the gold-bearing quartz veins and locally crosscut the gold lodes crystallized from 125 Ma to 127 Ma. These results constrain the mineralization age between 126  相似文献   

14.
Widespread dike swarm, including diorite-, monzonite-porphyry and lamprophyre, intruded in the al- tered breccia gold deposits along basin marginal faults, Guocheng, Jiaodong Peninsula. Petrography exhibits biotite enclaves in amphibole phenocrysts and the presence of acicular apatites in these dikes. Electron probe microanalyses (EPMA) show that the amphibole and clinopyroxene phenocryst’s mantle in diorite porphyry and lamprophyre respectively has sharply higher MgO (Mg#) and Cr2O3 contents in contrast to their cores. The plagioclase phenocryst in monzonite porphyry has reverse zoning. These results indicate that the magma mixing between mantle-derived mafic and crust-derived felsic magmas occurred in the original process of the dikes. Zircon cathodoluminescence (CL) images show well-developed magmatic oscillatory zones and the acquired LA-ICP-MS zircon U-Pb weighted mean 206Pb/238U ages are 114±2 Ma (MSDW=1.5) for monzonite porphyry (GS1) and 116±1 Ma (MSDW=0.8) for diorite porphyry (GS2), respectively. Earlier magmatic events in the northwest Jiaodong Peninsula represented by some inherited or captured zircons also occur in these dikes. Magmatic zircons from GS1 and GS2 display consistent chondrite-normalized REE patterns and Nb/Ta values, implying that they may share a similar or same source. HREE enrichment and obvious negative Eu anomalies of these zircons preclude garnet presented in their source. Our results, combined with preciously pub- lished data, indicate that dike intrusion and gold mineralization among quartz vein, altered tectonite and altered breccia gold deposits are broadly contemporaneous throughout the Jiaodong Peninsula. These also imply that the intensive crust-mantle interaction and asthenospheric underplating had oc- curred in the Early Cretaceous in the Peninsula, together with foundering of lower crust in the early Mesozoic, representing the different stages of lithosphere thinning in the North China Craton (NNC).  相似文献   

15.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

16.
The Qinling Orogenic Belt is divided commonly by the Fengxian-Taibai strike-slip shear zone and the Huicheng Basin into the East and West Qinling mountains,which show significant geological differences after the Indosinian orogeny.The Fengxian-Taibai fault zone and the Meso-Cenozoic Huicheng Basin,situated at the boundary of the East and West Qinling,provide a natural laboratory for tectonic analysis and sedimentological study of intracontinental tectonic evolution of the Qinling Orogenic Belt.In order to explain the dynamic development of the Huicheng Basin and elucidate its post-orogenic tectonic evolution at the junction of the East and West Qinling,we studied the geometry and kinematics of fault zones between the blocks of West Qinling,as well as the sedimentary fill history of the Huicheng Basin.First,we found that after the collisional orogeny in the Late Triassic,post-orogenic extensional collapse occurred in the Early and Middle Jurassic within the Qinling Orogenic Belt,resulting in a series of rift basins.Second,in the Late Jurassic and Early Cretaceous,a NE-SW compressive stress field caused large-scale sinistral strike-slip faults in the Qinling Orogenic Belt,causing intracontinental escape tectonics at the junction of the East and West Qinling,including eastward finite escape of the East Qinling micro-plate and southwest lateral escape of the Bikou Terrane.Meanwhile,the strike-slip-related Early Cretaceous sedimentary basin was formed with a right-order echelon arrangement in sinistral shear zones along the southern margin of the Huicheng fault.Overall during the Mesozoic,the Huicheng Basin and surrounding areas experienced four tectonic evolutionary stages,including extensional rift basin development in the Early and Middle Jurassic,intense compressive uplift in the Late Jurassic,formation of a strike-slip extensional basin in the Early Cretaceous,and compressive uplift in the Late Cretaceous.  相似文献   

17.
This paper presents systematic studies on the C—O and Sr—Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C—O isotopic compositions with δ13C and δ18O in the range of −4.8‰—−7.6‰ and +9.9‰—+13.2‰, respectively. However, Cretaceous three different types of mantlederived rocks have quite different C—O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr—Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C—O and Sr—Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.  相似文献   

18.
The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China’s territory, but production of gold accounts for about one fourth of the whole country. Thus, the Jiaodong Peninsula is a typical area or case of large-scale metallogenesis and a large clusters of mineral deposits in China. It is characterized by the large clusters of gold deposits in large scale, high reserve and short mineralizing stage. In this study, we suggest that the eastern boundary of the large clusters of gold deposits is as same as that of North China Block, the gold deposits are hosted by Archean metamorphic rocks or Mesozoic granites, and the age of gold mineralization is 121.6 to 122.7 Ma. Gold and related ore-forming materials are derived from multisources, i.e. Archean metamorphic rocks, granites and intermediate-mafic dikes, especially, intermediate-mafic dikes and calc-alkaline granites. The metallogenic geodynamic process is constrained by the tectonic evolution of eastern North China Block during Late Mesozoic, and it is the result of the interaction between mantle and crust as the boundary plates are playing role on the block.  相似文献   

19.
A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of 1918 ± 56 Ma. In addition, the zircons from a garnet amphibolite as a lens interbedded with marble in the Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age of 1857 ± 19 Ma, and the zircons from Shimenshan deformed granite in the eastern margin of the Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt. Supported by National Natural Science Foundation of China (Grant No. 40634023)  相似文献   

20.
渤海位于渤海湾盆地的东部,是我国华北地区新构造活动最强烈的地区之一,盆地内的沉积盖层(N-Q)中断裂极为发育。许多研究者从不同角度对渤海新构造进行过研究,但认识不一。笔者基于以往的工作,对该区新构造作了较深入的分析,确定渤海新构造运动起始于中新世晚期(12~10Ma BP)。从三维空间分析盖层断裂,并按其与盆地基底断裂的成因关系,将新构造活动的断裂分为继续活动断裂和新生断裂,并划分出3条主要的新构造活动断裂带:北东(偏北)向营口-潍坊断裂带北段是继续活动构造带,右旋逆平移活动,活动性弱;北西西向北京-蓬莱断裂带亦为继续活动构造带,左旋正平移活动,活动性较强;北东向庙西北-黄河口断裂带为新生构造带,右旋平移活动,活动性强。后两者组成一对以庙西北-黄河口断裂带为主的偏共轭活动构造带,该区域地震活动与之关系密切。最后探讨了渤海地区新构造期北东东-南西西至近东西向水平挤压的构造应力场及其与新构造活动断裂带发育的关系。提出新构造应力场与古近纪盆地裂陷阶段的应力场截然不同,新构造为地壳共轭剪切破裂系统,古近纪盆地构造是发育于地壳上部的伸展构造系统,这是两期不同体制的构造系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号