首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2008年5月12日四川汶川地区发生MW7.9地震,震中位置103.4°E,31.06°N.这次地震造成了以汶川、映秀为中心及其周边地域建筑物的严重破坏和人员的重大伤亡,且因为高山等地形复杂区域抢险救灾的艰巨性,为及时救援造成很大干扰.为更好理解地形因素对于强地面数值模拟结果的影响,建立了包含地形起伏影响及去除地形影响的两类模型.同时,依据震源破裂过程运动学反演结果,建立了包含障碍体破裂过程的震源滑动模型,实现断层分段、空间倾角以及滑移角的动态设定.基于动力学的地震动模拟方法,通过对地震波传播过程的数值计算和后处理分析,模拟由地震激发的区域强地面运动过程.结果显示:(1)强震动台站的断层距对地形效应具有放大或抑制作用,距离断层破裂带越近,地形效应越明显,反之,距离越远,则地形效应越微弱;(2)因为地形高差与障碍体的影响,地震造成的峰值可能出现在震中区域之外;(3)考虑地形影响模型的地表峰值速度(PGV)区域位于汶川与北川附近;而未考虑地形影响模型的PGV区域位于灌县—江油断层的后半段,处清平、安县附近;对汶川地震近实时强地面运动波场的模拟、峰值图谱的圈定及未来大地震强地面运动特征的预测都有重要指示意义.  相似文献   

2.
历次强震表明:局域起伏地形对由高频地震动起决定作用的震害存在显著影响。忽略场地浅表土层的影响,凸起地形场地震害高于凹陷地形。然而,由于地形效应影响因素的复杂多样以及公认地形效应表征模型的缺失,已有的宽频带地震动模拟与预测方法并未考虑高频地震动地形效应,这可能导致对地震动时程及参数的错误估计。为此,本文利用当前较具代表性的地形效应量化表征模型,初步分析了川滇区域高频地震动的地形效应。首先,给出了基于量化表征模型的区域高频地震动地形效应计算分析方案;其次,完整地阐述了该方案在川滇地区的应用,并结合漾濞地震震害考察结果初步验证了川滇高频地震动地形效应分析结果的可靠性;最后,讨论了分析结果的局限并给出其应用于宽频带地震动模拟与预测方法中的初步建议。  相似文献   

3.
起伏地形下黄河流域太阳散射辐射分布式模拟研究   总被引:6,自引:0,他引:6       下载免费PDF全文
针对天文、大气、宏观地理与局地地形等因子对起伏地形下太阳散射辐射的复杂作用,将影响起伏地形下太阳散射辐射的天空因素与地面因素分开处理.通过基于数字高程模型(DEM)数据的起伏地形下天文辐射模型和地形开阔度模型,综合考虑地面因素对散射辐射的影响;基于常规地面气象站观测资料建立的水平面散射辐射模型考虑天空因素对散射辐射的影响;依据各向异性散射机理,建立了起伏地形下太阳散射辐射分布式计算模型,探索出一条利用DEM数据和常规气象观测资料实现山区太阳散射辐射定量模拟的技术路线.以1 km×1 km分辨率的DEM数据作为地形的综合反映,实现了起伏地形下黄河流域1 km×1 km分辨率的太阳散射辐射分布式模拟.  相似文献   

4.
气候变化对沅江流域径流影响研究   总被引:1,自引:0,他引:1  
陈喜  苏布达  姜彤  施雅风 《湖泊科学》2003,15(Z1):115-122
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文在水量平衡基础上,建立考虑气象要素和地形变化的月水文模型,利用实测径流资料对模型在时空尺度上进行验证.利用全球气候模型(GCMs)预测的未来气候变化情形,对处于湿润区的沅江流域径流过程进行预测.分析结果表明,该区域径流过程对降雨和气温变化十分敏感.根据英国Hadcm2模型对本世纪中叶气候变化预测结果,沅江流域未来年降雨量减少0.43%气温升高1.55℃,丰水期降雨增加,而枯水期将有较大幅度减少.年径流量相应减少6.8%,丰水期径流量增大11%,枯水期径流减少47%,不利于防洪和水资源开发利用.  相似文献   

5.
李云祯  黄涛  戴本林  蔡臣 《地球物理学报》2010,53(12):3020-3025
岩石局部化变形在水利、石油、核废料处理、二氧化碳地质储存以及工程地质和岩土工程中都具有很强的实际意义,为了研究中主应力对于岩石局部化变形的影响,本文把轴对称拉伸和压缩状态的变形带角属性选做边界条件,推导得到RR模型中的本构参数,最后预测得到其他应力状态的变形带角,与Dunham白云岩真三轴实验数据进行比较,发现中主应力对岩石强度、变形率以及变形带角都有影响;变形带角在最小压应力值固定的情况下,随着平均应力的增加而增加,随着最小压应力的增加而减小,与认为中主应力对岩石强度以及变形没有影响的摩尔库伦条件预测结果不同.  相似文献   

6.
采用有限元有限差分方法,结合人工透射边界理论,研究局部坡地地形对地震动特性的影响,分析坡高、坡角对地形放大效应的影响。研究结果表明:坡地地形斜坡段各点反应谱谱比最大值沿坡高逐渐增大,坡脚点对地震动反应谱谱比呈缩小效应;坡底段各点反应谱谱比接近1;坡起平台段空间点受地形效应的影响较大;坡高和坡角对地形效应的影响较明显,当坡角不变时,不同坡高反应谱谱比曲线形状基本相同,峰值点对应的特征周期随着坡高的增加呈增长趋势,峰值点对应的反应谱谱比随着坡高的增加呈增大趋势,斜坡顶点阿里亚斯烈度比值在地形坡高超过一定数值后随着坡高的增加呈增大趋势;当坡高不变时,大部分频段内反应谱谱比最大值随着坡角的增加逐渐增大,斜坡顶点阿里亚斯烈度比值在坡角达到一定数值后随着坡角的增加呈增大趋势。  相似文献   

7.
考虑边坡地形效应的地震动力响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
地震滑坡往往会造成巨大的人员伤亡和财产损失,而边坡在地震作用下的响应规律是研究地震边坡稳定性的首要问题。本研究利用FLAC3D有限差分软件建立多个边坡模型,进行边坡地形效应的地震动力响应分析,考虑的地形主要包括坡高、坡角、坡面形状等三方面的因素。将选取的地震波作用于不同模型,分析坡面加速度、速度放大比及坡顶坡脚傅里叶谱值,研究边坡几何形态对边坡地震响应的影响。结果表明,坡高对坡面的速度放大影响明显,坡角对坡面加速度放大效果较强,而不同的坡面形状会造成不同的加速度响应规律,凹面坡加速度放大效果更小一些。该研究有助于地震边坡的稳定性分析并为边坡工程的抗震设计提供参考。  相似文献   

8.
针对三维波动弹性动力方程推导谱元法算法,考虑三维真实地形及介质的衰减特性,基于并行计算环境,采用谱元法和etop1′数据,对首都圈一个4.7级地震的地形效应进行模拟。模拟结果表明,在考虑地形效应情况下,模拟台站记录与实际观测记录更为一致,地形对地震波速度竖直分量的影响要大于两个水平分量,高PGA区域多分布于山顶与山脊;与平坦地形相比,PGA相对地形放大系数为-20.4%—174.6%,不同地点的垂直向速度及加速度分量波幅遵循峰顶、山脊得到放大的模式。与已有二维模型计算结果相比,三维真实地形对地震动的影响更为复杂。  相似文献   

9.
基于决策树考虑地形特征的场地参数估计方法   总被引:1,自引:0,他引:1  
发展基于地形特征的场地参数VS30估计方法因其具有重要应用需求而成为研究热点.以我国新疆维吾尔自治区和河北省的DEM数据和工程钻孔资料验证了基于决策树理论考虑地形特征的VS30估计方法在我国的适用性,检验方法的准确性和对DEM数据精度的敏感性.得到如下结论:(1)基于决策树理论考虑地形坡度、表面纹理和局部凸度划分了两个地区的16类地形类别,建立了考虑这三项地形特征的VS30预测模型;(2)经验证基于决策树理论考虑三项地形特征的VS30估计方法具有普遍适用性,但同时存在区域依赖性,需要分区建立适用的VS30预测模型;(3)发现引入了表面纹理和局部凸度两项地形特征后,较使用单一的地形坡度对VS30预测的准确性有所提升;(4)地形分类对DEM数据精度存在敏感性,高精度数据对陡峭的山脉地区划分可能更为详细,而低精度数据则能够对平坦的平原地区识别可能更为充分,相比较而言900 m精度的DEM数据对于基于地形特征的VS30估计方法相对较为实用.上述模型和方法可为发展我国区域场地分类图提供一种有效的技术途径.  相似文献   

10.
在回顾总结了国外火山碎屑流灾害分析模型研究历史的基础上,本文选取了Flow3D模型对我国东北地区长白山天池火山未来大喷发可能产生的火山碎屑流进行了灾害区域划分。以长白山天池火山现代地形为依据,设定了11条未来爆炸式火山喷发时产生的火山碎屑流的可能流动线路。模拟结果表明,在喷发柱高度为10km的情况下,灾害区划最大半径为13.7km;在喷发柱高度为20km的情况下,灾害区划最大半径为35.4km;在喷发柱高度为30km的情况下,灾害区划最大半径为57.8km。在此基础上,得出了长白山天池火山未来发生中规模、大规模和超大规模火山喷发时火山碎屑流的覆盖范围,完成了我国第一幅长白山天池火山碎屑流灾害区划图。  相似文献   

11.
In the study of rock avalanche phenomena, numerical modelling makes use of back analyses of the rock avalanche propagation for calibration of the modelling assumptions and parameters. The back analyses require knowledge of the run-out area boundaries and the thickness distribution of the deposit. Geophysical methods can be applied to retrieve the thickness distribution, but, due to strong heterogeneities and logistic problems they are seldom applied. The aim of this work is to assess the potential of integrated geophysical methods to recognise and characterise a deposit created by two rock avalanches which occurred in the Sandalp valley (Switzerland) in 1996. The topography of the site before and after the rock avalanche is known and can be used as a benchmark. Resistivity tomography, seismic P-wave tomography, and active and passive surface wave analysis have been applied on several profiles deployed both on the rock avalanche deposit and in the surrounding area. Innovative approaches for surface wave analysis based on laterally constrained inversion and multimodal inversion have been applied to the data. A comparison of the results of the geophysical investigations with the topographic benchmark has shown the capability of the geophysical methods to locate the bottom of the deposit in the areas where the contrast with the host sediments properties is significant. In these areas, the deposit has higher resistivities and lower seismic velocities than the underlying materials. In the areas where the deposit is thicker and richer in fine-grained materials the geophysical parameters are not able to discriminate between the rock avalanche deposit and the underlying sediments. As a secondary task, the geophysical methods also allowed the bedrock pattern to be outlined.  相似文献   

12.
Counter-slopes in avalanche paths influence avalanche flow in similarways as defence structures. Measurements and calculations of run-outon such slopes will improve our understanding of retaining damdesign. We have studied three different, well described avalancheevents; for each case we have calculated the run-out distance usingthe Noren, Irgens and Schieldrops continuum model (NIS), adjustingthe parameters to fit the simulated avalancheto the observed one. Using the same parameters, the run-out onidentical terrain, but without counter-slope, is computed. Comparisonbetween the energy dissipation in these different cases tells us whichtopography most efficiently retards an avalanche. With a smoothly curved valley bottom, the energy dissipation at agiven point on the opposite slope is less than on a flatrun-out. The explanation to this is that, when gravity retards anavalanche, a smaller portion of the energy loss is due to dissipationfrom viscous (velocity dependent) friction. When the avalanche travelsover a retaining dam, with much smaller curvature radii, a significantportion of the energy is dissipated. The consequence of this is that defence structures are not sodependent on the counter-slope inclination as on the curvature radiusin the transition to up-gradient. Further, introduction of acounter-slope in an avalanche path may conserve energy rather thancausing dissipation – if the inclination is not altered abruptlyenough. If the counter-slope is smooth, and not large enough tocompletely stop the avalanche, it will not reduce destructive energyon the downstream side. In fact, the destructive energy may bepartially conserved until the run-out.  相似文献   

13.
Factors influencing the distance a disintegrating rock mass travels as it spreads across the landscape after detaching from a slope include the volume and mechanical properties of the material, local topography and the materials encountered in the runout path. Here we investigate the influence of runout‐path material on the mobility and final morphology of the Round Top rock avalanche deposit, New Zealand. This rock avalanche of mylonitic schist ran out over a planar surface of saturated fluvial gravel. Longitudinal ridges aligned radial to source grade into smaller aligned hummocks and digitate lobes in the distal reach. Soils and river gravels in the runout path are found bulldozed at elongate ridge termini where they formed local obstacles halting avalanche motion at these locations, thus aiding development of prominent elongate ridges on the deposit. Further travel over the disrupted substrate led to avalanche–substrate mixing at the base of the debris mass. Field observations combined with subsurface geophysical investigations and laboratory analogue models illustrate the processes of substrate deformation features at the Round Top rock avalanche. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Rock avalanches destroy and reshape landscapes in only a few minutes and are among the most hazardous processes on Earth. The surface morphology of rock avalanche deposits and the interaction with the underlying material are crucial for runout properties and reach. Water within the travel path is displaced, producing large impact waves and reducing friction, leading to long runouts. We hypothesize that the 0.2 km3 Holocene Eibsee rock avalanche from Mount Zugspitze in the Bavarian Alps overran and destroyed Paleolake Eibsee and left a unique sedimentological legacy of processes active during the landslide. We captured 9.5 km of electrical resistivity tomography (ERT) profiles across the rock avalanche deposits, with up to 120 m penetration depth and more than 34 000 datum points. The ERT profiles reveal up to ~50 m thick landslide debris, locally covering up to ~30 m of rock debris with entrained fine-grained sediments on top of isolated remnants of decametre-wide paleolake sediments. The ERT profiles allow us to infer processes involved in the interaction of the rock avalanche with bedrock, lake sediments, and morainal sediments, including shearing, bulging, and bulldozing. Complementary data from drilling, a gravel pit exposure, laboratory tests, and geomorphic features were used for ERT calibration. Sediments overrun by the rock avalanche show water-escape structures. Based on all of these datasets, we reconstructed both position and size of the paleolake prior to the catastrophic event. Our reconstruction of the event contributes to process an understanding of the rock avalanche and future modelling and hazard assessment. Here we show how integrated geomorphic, geophysical, and sedimentological approaches can provide detailed insights into the impact of a rock avalanche on a lake. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

15.
Dry and dense snow avalanches are considered as dry granular flows. Theirinteraction with dams is the main objective of this paper. We studied howvarying the dam height could shorten a granular avalanche run-out thanksto a set of simple laboratory experiments carried out on different scales.Shortening the run-out was expected to depend on two effects: (i) storageof the granular material upstream of the dam, and (ii) local energy dissipations.A scaling law is highlighted. As suggested by dimensional arguments, thecontribution of the local energy dissipation was shown to be more dominantthan the storage effects.  相似文献   

16.
Rock avalanche is one of the most notable geological disasters in the mountain areas, such as the southeastern Tibetan Plateau. A typical one therein is the Luanshibao (LSB) rock avalanche that occurred in the Maoyaba basin. This rock avalanche has attracted a great deal of attentions, as it has a potential threat to the construction of Sichuan-Tibet Railway. It has been widely accepted that the LSB rock avalanche was caused by a seismic event. However, it is still an open question as to the timing of the earthquake-triggered rock avalanche. Here, we report twenty new 10Be exposure-ages obtained from the deposition zone. These tightly clustered exposure-ages, combined with geomorphic evidence, indicate that the LSB rock avalanche occurred during the mid-Holocene, possibly at 5.2 ± 0.2 ka. A comparison between the timing of rock avalanche and seismic events suggests a close correlation of the LSB rock avalanche with recurrent earthquakes around ∼5 ka BP. Such a correlation is well supported by the view from previous studies.  相似文献   

17.
Large, rapid rockslope failures generate deposits with complex morphologies due to a number of causal and influencing factors. To investigate these, we conducted a detailed case study at the carbonate Tschirgant deposit (Tyrol, Austria). It preserved evidence of simultaneous rock sliding (very large, coherent hummocks) and rock avalanche spreading (smaller, more scattered hummocks and ridges). Motion indicators, such as longitudinal ridges furthermore pinpoint the transition between linear sliding and radial spreading. The lithological distribution in the Tschirgant deposit shows that it retained source stratigraphy despite being split into two accumulation lobes by a high bedrock ridge. Furthermore, lithology had a very strong control on the final deposit morphology in that the different lithologic units form individual deposit surfaces. River erosion has created fortuitous outcrops that reveal the basal rock avalanche contact. The underlying valley‐fill sediments (substrates) have been intricately involved in shaping the rock avalanche morphology and, where entrained, highlight internal rock avalanche deformation features. This study shows that intrinsic dynamic properties of granular media (e.g. tendency for longitudinal alignments), emplacement mode, lithology (and source predisposition), runout path topography, and substrates form the quintet of causal factors that shape rock avalanche morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province, China on April 20th, 2013. The rock avalanche has transported about 1 500 000 m3 of sandstone from the source area. Based on discrete element modeling, this study simulates the deformation, failure and movement process of the rock avalanche. Under seismic loading, the mechanism and process of deformation, failure, and runout of the two branches are similar. In detail, the stress concentration occur firstly on the top of the mountain ridge, and accordingly, the tensile deformation appears. With the increase of seismic loading, the strain concentration zone extends in the forward and backward directions along the slipping surface, forming a locking segment. As a result, the slipping surface penetrates and the slide mass begin to slide down with high speed. Finally, the avalanche accumulates in the downstream and forms a small barrier lake. Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking. We suggest that the movement of the rock avalanche is a complicated process with multiple stages, including formation of the two branches, high-speed sliding, transformation into debris flows, further movement and collision, accumulation, and the final steady state. Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points. The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials. Besides, the sliding duration is also longer than that of the internal rock mass.  相似文献   

19.
The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi-3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

20.
Large rock slope failures from near‐vertical cliffs are an important geomorphic process driving the evolution of mountainous landscapes, particularly glacially steepened cliffs. The morphology and age of a 2·19 × 106 m3 rock avalanche deposit beneath El Capitan in Yosemite Valley indicates a massive prehistoric failure of a large expanse of the southeast face. Geologic mapping of the deposit and the cliff face constrains the rock avalanche source to an area near the summit of ~8·5 × 104 m2. The rock mass free fell ~650 m, reaching a maximum velocity of 100 m s?1, impacted the talus slope and spread across the valley floor, extending 670 m from the base of the cliff. Cosmogenic beryllium‐10 exposure ages from boulders in the deposit yield a mean age of 3·6 ± 0·2 ka. The ~13 kyr time lag between deglaciation and failure suggests that the rock avalanche did not occur as a direct result of glacial debuttressing. The ~3·6 ka age for the rock avalanche does coincide with estimated late Holocene rupture of the Owens Valley fault and/or White Mountain fault between 3·3 and 3·8 ka. The coincidence of ages, combined with the fact that the most recent (AD 1872) Owens Valley fault rupture triggered numerous large rock falls in Yosemite Valley, suggest that a large magnitude earthquake (≥M7.0) centered in the south‐eastern Sierra Nevada may have triggered the rock avalanche. If correct, the extreme hazard posed by rock avalanches in Yosemite Valley remains present and depends on local earthquake recurrence intervals. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号