首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater δ18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with δ18O values between −21.35 and −4.25‰. Corresponding snowpack δ18O ranged from −22.25 to −6.25‰. The coefficient of variation of δ18O in snowpack levels decreased from −0.37 to −0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater δ18O ranged from −15.30 to −8.05‰, with variations of up to 2.95‰ observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher δ18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher δ18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that δ18O in the initial and final half of major snowmelt was 1.30‰ lower and 1.45‰ higher, respectively, than the value from simple mixing. Mean snowpack δ18O on individual profiling days showed a steady increase from −15.15 to −12.05‰ due to removal of lower δ18O snowmelt and addition of higher δ18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower δ18O and later higher δ18O melt may be modeled and used in catchment tracing studies.  相似文献   

2.
The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O) and tritium activity (3H) were monitored in monthly precipitation at two continental stations (Ljubljana, Zagreb) and six stations along the eastern Adriatic coasts of Slovenia and Croatia in the period 2001–2003. Mean air temperatures and amount of precipitation were also recorded.

Distinct differences in both meteorological and isotopic data between the continental and maritime stations were observed. Seasonal variations in δ18O are smaller at the maritime stations than at the continental ones due to smaller seasonal temperature variations. A good correlation between δ18O and δ2H was obtained for each station, and the local meteoric water lines are close to the Global Meteoric Water Line, with a decreasing trend of slope for the south-Adriatic stations. Good correlations between δ18O in monthly precipitation and mean monthly air temperature were observed at all stations. The slope of δ18O vs. T varied between 0.37‰ °C−1 and 0.15‰ °C−1. Mean 3H activity and seasonal variation of 3H activity are smaller at maritime stations than at continental ones. Additionally, 3H activity decreases in the NW–SE direction of the Adriatic coast.

The study of spatial variations over this relatively small area rich in geographical and climatic diversities showed the complexity of the isotopic composition of precipitation and the isotopic data obtained for eight stations, most of them in the karstic area along the Adriatic coast, and gave valuable information for regional hydrological investigations and modelling of isotope variability over the Mediterranean basin.  相似文献   


3.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   

4.
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of δ18O and δ13C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta 18O values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta 13C is interpreted as responding negatively to increases in atmospheric CO2 concentration, biological activity and precipitation amount.

Six climatic phases are recognized. After adjustment of 1.2‰ for the ice volume effect, the δ18O record between 23 and 18 ka varies around −3.72‰ compared to the Holocene average of −3.17‰. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55‰ depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive δ18O excursions at 11.14 ka and 6.91–6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe.

Delta 13C values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in δ-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the δ18O record from 13.53 to 11.14 ka was not reflected in δ13C changes. The lowest δ13C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild.

Major trends in the δ18Oc record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity.  相似文献   


5.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   

6.
The response of a climate proxy against measured temperature, rainfall and atmospheric circulation patterns at sub-annual resolution is the ultimate test of proxy fidelity but very few data exist showing the level of correspondence between speleothem climate proxies and the instrumental climate record. Cave sites on the Gibraltar peninsula provide a unique opportunity to calibrate speleothem climate proxies with the longest known available precipitation isotopes and instrumental records. An actively growing speleothem sampled from New St. Michaels Cave in 2004 is composed of paired laminae consisting of light columnar calcite and a darker microsparitic calcite. Stable isotope analysis of samples micromilled in 100 μm steps at the equivalent of bi-monthly intervals reveals fabric-correlated annual cycles in carbon isotopes, oxygen isotopes and trace elements responding to seasonal changes in cave microclimate, hydrology and ventilation patterns. Calcite δ13C values reach a minimum in the light columnar fabric and evidence from trace element behaviour and cave monitoring indicates that this grows under cave ‘winter’ conditions of highest pCO2, whereas the dark microsparitic calcite, characterised by elevated δ13C and δ18O values grows under low ‘summer’ pCO2 conditions. Drip water δ13CDIC reaches a minimum in March–April, at which time the attenuated δ18O signal becomes most representative of winter precipitation. An age model based on cycle counting and the position of the 14C bomb carbon spike yields a precisely dated winter oxygen isotope proxy of cave seepage water for comparison with the GNIP and instrumental climate record for Gibraltar. The δ18O characteristics of calcite deposited from drip water representing winter precipitation for each year can be derived from the seasonally resolved record and allows reconstruction of the δ18O drip water representing winter precipitation for each year from 1951–2004. These data show an encouraging level of correspondence (r2 = 0.47) with the δ18O of rainfall falling each year between October and March and on a decadal scale the δ18O of reconstructed winter drip water mirrors secular change in mean winter temperatures.  相似文献   

7.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


8.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

9.
Negative carbon-isotope excursions have been comprehensively studied in the stratigraphic record but the discussion of causal mechanisms has largely overlooked the potential role of biomass burning. The carbon-isotopic ratios (δ13C) of vegetation, soil organic matter and peat are significantly lower than atmospheric carbon dioxide (CO2), and thereby provide a source of low 13C CO2 when combusted. In this study, the potential role of biomass burning to generate negative carbon isotope excursions associated with greenhouse climates is modeled. Results indicate that major peat combustion sustained for 1000 yr increases atmospheric CO2 from 2.5× present atmospheric levels (PAL) to 4.6× PAL, and yields a pronounced negative δ13C excursion in the atmosphere ( 2.4‰), vegetation ( 2.4‰) and the surface ocean ( 1.2‰), but not for the deep ocean ( 0.9‰). Release of CO2 initiates a short-term warming of the atmosphere (up to 14.4 °C, with a duration of 1628 yr), which is consistent with the magnitude and length of an observed Toarcian excursion event. These results indicate that peat combustion is a plausible mechanism for driving negative δ13C excursions in the rock record, even during times of elevated pCO2.  相似文献   

10.
Benthic foraminiferal magnesium/calcium ratios were determined on one hundred and forty core-top samples from the Atlantic Ocean, the Norwegian Sea, the Indian Ocean, the Arabian Sea and the Pacific Ocean, mostly at sites with bottom water temperatures below 5 °C. Mg/Ca ratios are consistently lower, by  0.2 mmol/mol, in samples cleaned using oxidative and reductive steps than using oxidative cleaning. Differences between Cibicidoides species have been identified: Mg/Ca of Cibicidoides robertsonianus > Cibicidoides kullenbergi > Cibicidoides wuellerstorfi. Comparison with bottom water temperatures support observations of lowered Mg/Ca of C. wuellerstorfi at temperature below  3 °C compared with values predicted by published calibrations and from other Cibicidoides species. Hydrographic data shows that carbonate ion saturation (Δ[CO32−]) decreases rapidly below this temperature. An empirical sensitivity of Δ[CO32−] on Mg/Ca has been established for C. wuellerstorfi of 0.0086 ± 0.0006 mmol/mol/μmol/kg. A novel application using modern temperatures and Last Glacial Maximum temperatures derived via pore fluid modelling supports a carbonate ion saturation state effect on Mg incorporation. This may significantly affect calculated δ18Oseawater obtained from foraminiferal δ18O and Mg/Ca temperature.  相似文献   

11.
Liu M  Hou LJ  Xu SY  Ou DN  Yang Y  Yu J  Wang Q 《Marine pollution bulletin》2006,52(12):1625-1633
The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively −29.8‰ to − 26.0‰ and 1.6‰–5.5‰ in the flood season (July), while they were −27.3‰ to − 25.6‰ and 1.7‰–7.8‰ in the dry season (February), respectively. The δ13C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ15N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes.  相似文献   

12.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

13.
The meteorite ALH84001, a sample of the ancient martian crust, contains small quantities (1%) of strongly chemically zoned carbonate. High spatial resolution (10 μm) ion microprobe analyses show that the chemical zoning is strongly correlated with variations in oxygen isotope ratios. Early formed Ca,Fe-rich cores have δ18O 7‰ increasing to 22‰ SMOW in the more Mg-rich outer cores and magnesite rims. Isolated areas of ankerite appear to be isotopically lighter with δ18O 1‰. The large range in δ18O requires a significant range in either fluid isotopic composition, or temperature, or both, in the course of the deposition sequence. Our data are inconsistent with formation of the zoned carbonates by closed system Rayleigh fractionation. There is no unique interpretation of the oxygen data, but the recent observation of existence of Δ17O excesses in the carbonate appears to rule out models which involve high temperature isotopic exchange with silicate. Comparison with terrestrial analogues suggests that ALH84001 carbonates formed in a hydrothermal system with T<400°C, and which, at least in the early stages of formation, may have involved water with δ18O < 0‰ SMOW. The later stages of deposition probably occurred at temperatures below 150°C, a conclusion which does not preclude the co-existence of thermophilic bacteria; temperatures during earlier stages of deposition are less likely to have been hospitable to bacteria.  相似文献   

14.
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (δ18Of) that extend from +18.7‰ to +32.8‰ (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25°C to 40°C. The resulting fractionation factors of 1.032 at 25°C and 1.027 at 40°C are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17°C to 29°C in Barbados Ridge sediments and at 33°C to 62°C in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite δ18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17–20°C) or under closed system conditions.  相似文献   

15.
Magmatic iron meteorites are considered to be remnants of the metallic cores of differentiated asteroids, and may be used as analogues of planetary core formation. The Fe isotope compositions (δ57/54Fe) of metal fractions separated from magmatic and non-magmatic iron meteorites span a total range of 0.39‰, with the δ57/54Fe values of metal fractions separated from the IIAB irons (δ57/54Fe 0.12 to 0.32‰) being significantly heavier than those from the IIIAB (δ57/54Fe 0.01 to 0.15‰), IVA (δ57/54Fe − 0.07 to 0.17‰) and IVB groups (δ57/54Fe 0.06 to 0.14‰). The δ57/54Fe values of troilites (FeS) separated from magmatic and non-magmatic irons range from − 0.60 to − 0.12‰, and are isotopically lighter than coexisting metal phases. No systematic relationships exist between metal-sulphide fractionation factor (Δ57/54FeM-FeS = δ57/54Femetal − δ57/54FeFeS) metal composition or meteorite group, however the greatest Δ57/54FeM-FeS values recorded for each group are strikingly similar: 0.79, 0.63, 0.76 and 0.74‰ for the IIAB, IIIAB, IAB and IIICD irons, respectively. Δ57/54FeM-FeS values display a positive correlation with kamacite bandwidth, i.e. the most slowly-cooled meteorites, which should be closest to diffusive equilibrium, have the greatest Δ57/54FeM-FeS values. These observations provide suggestive evidence that Fe isotopic fractionation between metal and troilite is dominated by equilibrium processes and that the maximum Δ57/54FeM-FeS value recorded (0.79 ± 0.09‰) is the best estimate of the equilibrium metal-sulphide Fe isotope fractionation factor. Mass balance models using this fractionation factor in conjunction with metal δ57/54Fe values and published Fe isotope data for pallasites can explain the relatively heavy δ57/54Fe values of IIAB metals as a function of large amounts of S in the core of the IIAB parent body, in agreement with published experimental work. However, sequestering of isotopically light Fe into the S-bearing parts of planetary cores cannot explain published differences in the average δ57/54Fe values of mafic rocks and meteorites derived from the Earth, Moon and Mars and 4-Vesta. The heavy δ57/54Fe value of the Earth's mantle relative to that of Mars and 4-Vesta may reflect isotopic fractionation due to disproportionation of ferrous iron present in the proto-Earth mantle into isotopically heavy ferric iron hosted in perovskite, which is released into the magma ocean, and isotopically light native iron, which partitions into the core. This process cannot take place at significant levels on smaller planets, such as Mars, as perovskite is only stable at pressures > 23 GPa. Interestingly, the average δ57/54Fe values of mafic terrestrial and lunar samples are very similar if the High-Ti mare basalts are excluded from the latter. If the Moon's mantle is largely derived from the impactor planet then the isotopically heavy signature of the Moon's mantle requires that the impacting planet also had a mantle with a δ57/54Fe value heavier than that of Mars or 4-Vesta, which then implies that the impactor planet must have been greater in size than Mars.  相似文献   

16.
High resolution time series data of hydrogen (δD) and oxygen (δ18O) isotope values of precipitation have been generated for the first time at Kolkata, eastern India where the summer monsoon clouds from Bay of Bengal (BOB) commence their journey over India. Use of a Rayleigh cum two component mixing model and comparison of Kolkata data with the International Atomic Energy Agency (IAEA)–Global Network of Isotopes in Precipitation (GNIP) data base of New Delhi suggest that the precipitation at New Delhi cannot be explained by simple continental effect of a BOB vapour source alone, traveling and raining successively along Kolkata–New Delhi route. It is necessary to invoke an admixture of  20% vapour originating from the Arabian sea with the vapour coming from BOB and finally causing summer monsoon rains at New Delhi. The findings have major implications to the regional water vapour budget over India.  相似文献   

17.
In order to better constrain the Li isotope composition of the bulk solar system and Li isotope fractionation during accretion and parent body processes, Li isotope compositions and concentrations were determined on a number of meteorite falls and finds. This is the first comprehensive study that systematically investigates a representative set of samples from carbonaceous chondrites (CI, CM2, CO3, CV3, CK4 and one ungrouped member), enstatite chondrites (EH, EL), ordinary chondrites (H, L, LL), and achondrites (one eucrite, diogenites, one pallasite, and a silicate inclusion from a IAB iron).

Carbonaceous chondrites have an average isotope composition of δ7Li = + 3.2‰ ± 1.9 (2σ) which agrees with the average composition of relatively pristine olivines (representative for the bulk composition) from the Earth primitive upper mantle (PUM). This is lighter than the average δ7Li of the basaltic differentiates of the Earth, Moon and Mars and the achondrites. It is an important observation, however, that the lighter end of the isotopic range of the differentiates always coincides with the averages of the mantle olivines and the carbonaceous chondrites. From this we conclude that the bulk of the inner solar system consists mostly of material from carbonaceous chondrites and that the variation seen in the differentiates is due to planetary body processes. Ordinary chondrites are significantly lighter than carbonaceous chondrites. No significant differences in δ7Li exist between enstatite chondrites (n = 3) and carbonaceous or ordinary chondrites. The difference between carbonaceous and ordinary chondrites and the variability within the chondrites could indicate the existence of distinct Li isotope reservoirs in the early solar nebula.  相似文献   


18.
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 haveδ18O values generally ranging from +6.1 to +8.5‰ SMOW(mean= +7.0‰), although minor zeolite-rich samples range up to 12.7‰. Rocks depleted in18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6‰, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4‰, respectively.

Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10–100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios ( 1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient ( 2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and18O enrichment of fluids, resulting in local increases inδ18O of rocks which had been previously depleted in18O during prior axial metamorphism.  相似文献   


19.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

20.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号