首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two surveys were conducted in December, 2008, and August, 2009, in the mud depo-center off the Zhejiang-Fujian coast (MDZFC) in the inner shelf of East China Sea to depict the seasonal variation of the water column structure and analyze the factors responsible for the variation. The results were also used to discuss the sediment transport process and formation mechanism of the MDZFC. The water column structures varied significantly between the two surveys, with respect to the temperature, salinity, and turbidity. The summer water body, with relatively high temperatures and salinities, was evidently stratified with respect to the temperature, whereas the salinity remained constant throughout the water column. The stratification restricts sediment resuspension and transport. From the north to the south, the temperature in the middle-bottom water layer slightly increased, whereas the salinity remained mostly constant. In winter, the water body, with relatively low temperatures and salinities, was well mixed vertically. The temperature and salinity both increased from the surface to the bottom toward the east (deep water) and the south. A wedge-shaped water mass, which appears as a coastal upwelling, with relatively low temperature and high salinity in summer and relatively high temperature and high salinity in winter, spread landward along the sea floor, from the sea deeper than 50 m, whereas the extension was relatively stronger in winter. The water turbidity in winter was clearly higher than in summer. In the surface layer, the turbidity was generally greater than 5 FTU in winter and less than 1 FTU in summer. In the bottom layer, the turbidity was much greater than 200 FTU in winter and slightly greater than 50 FTU in summer. Moreover, the turbid water layer close to the sea floor in winter can reach into an area deeper than 50 m with a thickness of over 10 m; however, it was only limited to only 30-m-deep water with a thickness of 5 m in summer. The differences of marine sedimentary environment in the MDZFC were attributed to the seasonal variations of hydrodynamics environment, weather conditions, sediment supplies, and seasonal circulations. The results suggest that winter is the key season for particle transportation and deposition. The bottom turbid layer is the primarily channel of sediment transport, and the upwelling currents and the oceanic front systems play an important role in the sediment deposit processes and the formation of the MDZFC.  相似文献   

2.
In the years 1999 and 2001, three intense tropical cyclones formed over the northern Indian Ocean—two over the Bay of Bengal during 15–19 and 25–29 October, 1999 and one over the Arabian Sea during 21–28 May, 2001. We examined the thermal, salinity and circulation responses at the sea surface due to these severe cyclones in order to understand the air-sea coupling using data from satellite measurements and model simulations. It is found that the Sea Surface Temperature (SST) cooled by about 0.5 °–0.8 °C in the Bay of Bengal and 2 °C in the Arabian Sea. In the Bay of Bengal, this cooling took place beneath the cyclone center whereas in the Arabian Sea, the cooling occurred behind the cyclone only a few days later. This contrasting oceanic response resulted mainly from the salinity stratification in the Bay of Bengal and thermal stratification in the Arabian Sea and the associated mixing processes. In particular, the cyclones moved over the region of low salinity and smaller mixed layer depth with a distinct mixed layer deepening to the left side of the cyclone track. It is envisaged that daily satellite estimates of SST and Sea Surface Salinity (SSS) using Outgoing Longwave Radiation (OLR) and model simulated mixed layer depth would be useful for the study of tropical cyclones and prediction of their path over the northern Indian Ocean.  相似文献   

3.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   

4.
Recent observations of ocean temperature in several Greenland fjords suggest that ocean warming can cause large changes in the outlet glaciers in these fjords. We have observed the Helheim outlet-glacier front in the Sermilik Fjord over the last three decades using satellite images, and the vertical fjord temperature and salinity during three summer expeditions, 2008?C2010. We show that the subsurface water below 250 m depth is the warm saline Atlantic Water from the Irminger Sea penetrating into the fjord and exposing the lower part of the Helheim glacier to warm water up to 4°C. Lagged correlation analysis spanning the 30-year time series, using the subsurface Atlantic Water temperature off the coast as a proxy for the variability of the subsurface warm Atlantic Water in the fjord, indicates that 24% of the Helheim ice-front movement can be accounted for by ocean temperature. A strong correlation (?C0.75) between the ice-front position and the surface air temperature from a nearby meteorological station suggests that the higher air temperature causes melting and subsequent downward percolation of meltwater through crevasses leading to basal lubrication; the correlation accounts for 56% of the ice-front movement. The precise contribution of air temperature versus ocean temperature however, remains an open question, as more oceanographic and meteorological measurements are needed close to the glacier terminus.  相似文献   

5.
New observations from buoys and soundings reveal the discrepancies in air–sea interface and in vertical structures between spring (April to May) and summer (July) fogs in the Yellow Sea. Spring fogs are shallow with a robust temperature inversion, dry layer and cold phase (surface air temperature or SAT is lower than sea surface temperature or SST); summer fogs are deep with weaker stability, indistinct fog top and warm phase (SAT?>?SST). Along with numerical simulations, conceptual models for the mechanisms of temperature inversion are suggested. The land–sea contrast is responsible for the robust temperature inversion in spring, and the deep southerlies derived from the east Asian summer monsoon and the adiabatic sinking from the western Pacific subtropical high contributes to the weaker inversion in summer. The dry layer above the sea fog top intensifies the longwave radiative cooling effect to lead to the cold phase in spring fogs. The radiative cooling is weaker in summer fogs resulting in SAT?>?SST.  相似文献   

6.
Igor Esau 《Ocean Dynamics》2014,64(5):689-705
A turbulence-resolving parallelized atmospheric large-eddy simulation model (PALM) has been applied to study turbulent interactions between the humid atmospheric boundary layer (ABL) and the salt water oceanic mixed layer (OML). The most energetic three-dimensional turbulent eddies in the ABL–OML system (convective cells) were explicitly resolved in these simulations. This study considers a case of shear-free convection in the coupled ABL–OML system. The ABL–OML coupling scheme used the turbulent fluxes at the bottom of the ABL as upper boundary conditions for the OML and the sea surface temperature at the top of the OML as lower boundary conditions for the ABL. The analysis of the numerical experiment confirms that the ABL–OML interactions involve both the traditional direct coupling mechanism and much less studied indirect coupling mechanism (Garrett Dyn Atmos Ocean 23:19–34, 1996). The direct coupling refers to a common flux-gradient representation of the air–sea exchange, which is controlled by the temperature difference across the air–water interface. The indirect coupling refers to thermal instability of the Rayleigh–Benard convection, which is controlled by the temperature difference across the entire mixed layer through formation of the large convective eddies or cells. The indirect coupling mechanism in these simulations explained up to 45 % of the ABL–OML co-variability on the turbulent scales. Despite relatively small amplitude of the sea surface temperature fluctuations, persistence of the OML cells organizes the ABL convective cells. Water downdrafts in the OML cells tend to be collocated with air updrafts in the ABL cells. The study concludes that the convective structures in the ABL and the OML are co-organized. The OML convection controls the air–sea turbulent exchange in the quasi-equilibrium convective ABL–OML system.  相似文献   

7.
A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012–2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The substantial decrease in net heat flux along with entrainment cooling has been identified as causes for this behavior.  相似文献   

8.
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27°S and 39°S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33°S to the shelf break at 36°S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Río de la Plata. Winter TS diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW–TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T∼16 °C) salinity minimum layer at 40–50 m depth, created by SASW–STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis.  相似文献   

9.
《Continental Shelf Research》1999,19(14):1833-1848
A well-defined front in temperature and salinity separates the stratified Clyde Sea water from the vertically well mixed water of the North Channel. The detailed structure of the front was observed in autumn 1990 by a combination of, repeated crossings of the front using a ship-borne ADCP and a towed undulating CTD system, and the deployment of a fixed mooring system with temperature, salinity and velocity sensors for a period of 12 days. The results show that the front was situated on the Great Plateau near a contour of log10(H/U32)=2.7∼3.7 where H is the water depth and U2 the amplitude of M2 tidal velocity. The temperature structure in the Clyde Sea was inverted and the Clyde Sea surface temperature was lower than that of the vertically well mixed water in the North Channel. Since the salinity gradient was stronger than the temperature gradient with fresher water on the surface, the density structure was predominantly controlled by salinity. There were indications of warm and saline bottom water upwelling on the mixed side of the front during spring tides. This upwelling disappeared and the salinity and temperature structure at the front was more diffuse during the neap tide period. A jet-like along-front residual current was observed flowing to the northwest in the surface layer with a counter flow to the southeast in the bottom layer. The vertical difference in velocity was about 9 cm s−1 and was approximately consistent with the shear determined from the thermal wind relation. Both cross- and along-front components of the current observed at the mooring station varied in response to the advection of the front, although both components had large variations with periods of less than one day and several days. The front was advected past the mooring system by a mean flow from the North Channel to the inner basin, while oscillating 3–5 km back and forth with the tidal currents. From the velocity at a current meter mooring and CTD data, the front was estimated to have moved up to 20 km during the observational period and the cross frontal velocity was inferred to be 3–4 cm s−1.  相似文献   

10.
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.  相似文献   

11.
226Ra profiles have been measured in the western Indian Ocean as part of the 1977–1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.  相似文献   

12.
《Continental Shelf Research》2006,26(12-13):1448-1468
To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May–September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.  相似文献   

13.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

14.
Radon-222 activity levels have been measured at deck level in regions of the Arabian Sea, Indian Ocean, and Bay of Bengal during the summer monsoon periods of 1973, 1977, and 1979, as part of the Monex programme. The aim of the measurements was to find the source regions of the monsoon air and the variations in its composition under different synoptic conditions. The radon data confirm that the monsoon air is predominantly of southern-hemisphere origin, with a small continental component. The continental component, as indicated by radon values, increases at higher latitudes and seems to vary with different circulation patterns in the synoptic scale. The use of radon as a tracer in monsoon studies is thus demonstrated.  相似文献   

15.
A project to link the Dead Sea to the Red Sea via a canal is undergoing extensive study. In previous works, a generalized mathematical model describing the state of the Dead Sea and a simulation model to implement it have been developed. The model is extended to include the proposed canal project and investigates two alternative modelling canal scenarios: (1) introducing the canal water inflow into the bottom layer or (2) the top layer of the sea. The predicted general effects of the canal are the restoration of the water level of the sea to pre‐1970s level; an increase in the total evaporation rate and a decrease in the top layer salinity. Implementing scenario 1, the model predicts that: the water level of the Dead Sea will exceed the desired level design value and therefore shorter filling time can be used; seasonal stratification will persist; total evaporation rate will increase Modestly; there will a small decrease in the salinity of the top layer but a substantial decrease in the salinity of the bottom layer, which will hurt industries severely; there will be a continuation of seasonal crystallization of aragonite and gypsum. Implementing scenario 2 the model predicts that: the water level of the Dead Sea will be maintained at the desired level design value; stratification will be re‐established, with the formation of a permanent two‐layer system; there will be a substantial increase in the total evaporation rate; the salinity of the top layer will decrease significantly but there will be continuous slower salinity increase in the bottom layer; the crystallization of aragonite will cease, but seasonal gypsum crystallization can be expected to continue as soon as the filling period ends and the canal shifts into normal operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

17.
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.  相似文献   

18.
During the summer monsoon season over India a range of intraseasonal modulations of the monsoon rains occur due to genesis of weather disturbances over the Bay of Bengal (BOB) and the east Arabian Sea. The amplitudes of the fluctuations in the surface state of the ocean (sea-surface temperature and salinity) and atmosphere are quite large due to these monsoonal modulations on the intraseasonal scale as shown by the data collected during the field programs under Bay of Bengal Monsoon Experiment (BOBMEX) and Arabian Sea Monsoon Experiments (ARMEX). The focus of BOBMEX was to understand the role of ocean-atmospheric processes in organizing convection over the BOB on intra-seasonal scale. ARMEX-I was aimed at understanding the coupled processes in the development of deep convection off the West Coast of India. ARMEX-II was focused on the formation of the mini-warm pool across the southeast Arabian Sea in April-May and its role in the abrupt onset of the monsoon along the Southwest Coast of India and its further progress along the West Coast of India. The paper attempts to integrate the results of the observational studies and brings out an important finding that atmospheric instability is prominently responsible for convective organization whereas the upper ocean parameters regulate the episodes of the intraseasonal oscillations.  相似文献   

19.
Observations of a large temperate embayment in Victoria, Australia, reveal a sustained climatic shift that occurred in response to a prolonged drought in the region during 1997–2009. Historically, the bay is fresher than the ocean with fresh outflow to the sea. However, the drought has caused substantially elevated salinity and temperatures above adjacent oceanic waters. The bay's capacity to dilute and flush waste discharges to the ocean was also changed. Observed conditions have been numerically modelled with hydrodynamic and coupled lagrangian particle dispersion models to test differences in dispersion and exchange during historically fresher conditions and hypersaline bay scenarios. Further scenarios were tested for projected climate conditions which were similar to the recent drought responses in the bay. The models identified the effects on the circulation of the climatic shift including regions of increased vulnerability to extreme salinity in the bay, with some existing discharges concentrating in these regions of heightened vulnerability. Absolute salinity in the bay could reach critical levels of over 38?g?kg?1, in places, which may compromise bay ecology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号