首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The mobility conditions of bedload transport in an alpine high‐gradient step–pool stream (Rio Cordon) are analysed. Since 1986, a device system at the downstream end section of the stream has been operating in order to monitor the water discharge, suspended sediment and bedload transport. Sediment distribution of bedload transported by various floods has been analysed, and equal‐mobility evidence is recognized only for the high‐magnitude flows ever recorded (RI > 50 years). The thresholds for size‐selective and equal‐mobility transport conditions are identified and quantified by using both data provided by the fractional transport rate and by length displacements of marked particles. Size‐selective bedload transport seems to dominate when the critical shear stress of the size fractions τci considered is exceeded, whereas the equal‐mobility condition is approached as levels of excess shear stress become higher (τeqi = 1·45τci). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Several methods were employed in the Ardennian rivers (Belgium) to determine the depth of the active layer mobilized during floods and to evaluate the bedload discharge associated with these events. The use of scour chains has shown that the depth of the active layer is systematically less than the b‐axis of the average particle size (D50) of the elements which compose the surface layer of the riffles. This indicates that only a partial transport exists during low magnitude floods. The bedload discharge has been evaluated by combining data obtained using the scour chains technique and the distance covered by tracers. Quantities of sediment transported during frequent floods are relatively low (0·02 t km–2) due to the armour layer which protects the subsurface material. These low values are also related to the fact that the distance calculated for mobilized bedload only applies to tracers fitted with PIT (passive integrated transponder)‐tags (diameter > 20 mm), whereas part of the bedload discharge is composed of sand and fine gravel transported over greater distances than the pebbles. The break‐up of the armour layer was observed only once, for a decennial discharge. During this event, the bedload discharge increased considerably (2 t km–2). The use of sediment traps, data from dredging and a Helley–Smith sampler confirm the low bedload transport in Ardennian rivers in comparison to the bedload transport in other geomorphological contexts. This difference is explained by the presence of an armoured layer but also by the imbricated structures of flat bed elements which increase the resistance to the flow. Finally, the use of the old iron industry wastes allowed to quantify the thickness of the bed reworked over the past centuries. In the Lembrée River, the river‐bed contains slag elements up to a depth of about 50 cm, indicating that exceptional floods may rework the bed to a considerable depth. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Since the early 1990s, US Forest Service researchers have made thousands of bedload measurements in steep, coarse‐grained channels in Colorado and Wyoming, USA. In this paper we use data from 19 of those sites to characterize patterns and rates of coarse sediment transport for a range of channel types and sizes, including step–pool, plane‐bed, pool–riffle, and near‐braided channels. This effort builds upon previous work where we applied a piecewise regression model to (1) relate flow to rates of bedload transport and (2) define phases of transport in coarse‐grained channels. Earlier, the model was tested using bedload data from eight sites on the Fraser Experimental Forest near Fraser, Colorado. The analysis showed good application to those data and to data from four supplementary channels to which the procedure was applied. The earlier results were, however, derived from data collected at sites that, for the most part, have quite similar geology and runoff regimes. In this paper we evaluate further the application of piecewise regression to data from channels with a wider range of geomorphic conditions. The results corroborate with those from the earlier work in that there is a relatively narrow range of discharges at which a substantial change in the nature of bedload transport occurs. The transition from primarily low rates of sand transport (phase I) to higher rates of sand and coarse gravel transport (phase II) occurs, on average, at about 80 per cent of the bankfull (1·5‐year return interval) discharge. A comparison of grain sizes moved during the two phases showed that coarse gravel is rarely trapped in the samplers during phase I transport. Moreover, the movement and capture of the D16 to D25 grain size of the bed surface seems to correspond with the onset of phase II transport, particularly in systems with largely static channel surfaces. However, while there were many similarities in observed patterns of bedload transport at the 19 studied sites, each had its own ‘bedload signal’ in that the rate and size of materials transported largely reflected the nature of flow and sediment particular to that system. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

6.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The mass and size distribution of grain entrainment per unit bed area may be measured by replacing a volume of the bed with tracer gravels and observing the mass difference before and after a transport event. This measure of spatial entrainment is relevant to any process involving size-selective exchange of sediment between transport and bed and may be directly used in calculations of sediment transport rate using an elementary relation for fractional transport components presented here. This relation provides a basis for evaluating tracer data collected by different methods and may be used to provide physical insight regarding the expected behaviour of tracer grains. The variation with grain size of total displacement length Lti depends on the degree of mobilization of the individual fractions on the bed surface: Lti is independent of Di for smaller, fully mobile sizes and decreases rapidly with Di for larger fractions in a state of partial transport (in which a portion of the surface grains remain immobile through the flow event). The boundary between fully and partially mobile grain sizes increases with flow strength. These inferences are supported by values of Lti calculated from flume experiments and provide a physical explanation for a summary relation between Lti and Di based on field data. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
The study of bedload transport processes is constrained by an inability to monitor the mass, volume and grain size distribution of sediment in transport at high temporal frequencies. Building upon a previously published design, we have integrated a high‐resolution (1392 × 1024 pixels) video camera with a light table to continuously capture images of 2–181 mm material exiting a flume. The images are continuously recorded at a rate of 15 to 20 frames per second and are post‐processed using LabView(?) software, yielding continuous grain‐size‐specific transport information on a per second basis. The video capture rate is sufficient to record multiple images of each grain leaving the flume so that particle velocities can be measured automatically. No manual image processing is required. After calibration the method is accurate and precise for sediment in the 2 mm through to 45 mm grain size classes compared with other means of measuring bedload. Based on a set of validation samples, no statistically significant difference existed between the D10, D16, D25, D50, D75, D84, D90 and D95 determined by sieving captured samples and the Di values determined with the system. On average the system overpredicted transport by 4 per cent (n = 206, SD = 42%). This error can be corrected easily by simply weighing the mass of sediment that leaves the flume. The technology is relatively inexpensive and provides high‐resolution data on coarse sediment transport out of a flume. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
While clay and silt matrices of gravel‐bed rivers have received attention from ecologists concerned variously with the deteriorating environments of benthic and hyporheic organisms, their impact on sediment entrainment and transport has been explored less. A recent increase of such a matrix in the bed of Nahal Eshtemoa, an ephemeral river of the northern Negev, has more than doubled the boundary shear stress needed to initiate bedload, from 7 N m‐2* = 0.027) during the flash floods of 1991–2001 to 15 N m‐2* = 0.059) during those of 2008–2009. The relation between bedload flux and boundary shear stress continues to be well‐defined, but it is displaced. The matrix now contains a significant amount of silt and clay size material. The reasons for the increased entrainment threshold of bedload are explored. Large‐scale laser scanning of the dry bed reveals a reduction in grain‐scale morphological roughness, while artificial in situ tests of matrix integrity indicate considerable cohesion. The implications for adopting bed material sampling strategies that account for matrix development are assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Flume experiments were conducted using four different gravel beds (D50 + 12–39 mm) and a range of marked particles (10–65 mm). The shear stresses were evaluated from friction velocities, when initial movement of marked particles occurred. Two kinds of equations were produced: first for the threshold of initial movement, and second for generalized movement. Equations of the type 0c + a(Di/D50)b, as proposed by Andrews (1983) are applicable even if the material is relatively well sorted. However, the values of a and b are lower (respectively 0·050 and -0·70) for initial movement. Generalized movement requires a higher shear stress (a + 0·068 and b + -0·80). D90 of the bed material and y0 (the bed roughness parameter) were also used as reference values in place of D50. They produced lower values than in natural streams, mainly owing to the fact that the material used in the flume is better sorted: clusters are less well developed and the bed roughness is lower.  相似文献   

13.
Structured gravel river beds clearly exert a major influence on bed stability. Indexing structural stability by field measurements of bed strength neglects the processes operating to entrain and transport bed material in different parts of each structure. This study takes a morphological approach to interpreting the critical processes, using particle tracing to determine the movement of individual cluster particles over a range of flood event magnitudes and durations. The experiment was carried out on the River South Tyne, UK; it uses flow hydrographs measured nearby and also benefits from previous studies of historical development, channel morphology and sediment transport at the same site. More than 30 clusters were monitored over a seven‐month period during which clusters occupied 7–16 per cent of the bed. Threshold flows delimiting three apparently contrasting bed sediment process regimes for cluster particles are tentatively set at 100 m3 s?1 and 183 m3 s?1; durations of flow at these levels are critical for cluster development, rather than flow peak values. Wake particles are transported most easily. Flow straightening in the wandering channel planform reduces the stability of clusters, since mechanical strength is markedly reduced by this change of direction. The overall area covered by clusters between significant transport events varies little, implying a dynamic equilibrium condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Discharge characteristics in six adjacent mountainous watersheds in northern New Mexico, U.S.A., vary substantially between basins underlain by different lithologies. Relatively resistant gneisses and granites underlie two basins (drainage areas: 43 and 94 km2) that have high unit discharge (0·010 to 0·14 m3s?1 km?2), high bankfull discharge, and sustained high discharge. Less resistant sandstones and shales underlie four basins (drainage areas: 96 to 215 km2) that have relatively low unit discharge (0·001 to 0·005 m3s?1 km?2), relatively low bankfull discharge, and peak discharges that are not sustained as long as those in the crystalline terrane. Analysis of snowmelt-runoff water budgets suggests that three factors control hydrologic conditions in the basins. First, area-elevation distributions appear to control the timing and amounts of water input. These distributions probably reflect the erosional resistance of the different lithologies. Second, lithology appears to control runoff production in areas having minor amounts of storage. Third, glacial deposits in headwater regions control discharge duration and timing via storage and return flow releases. The amount of return flow released by glacial deposits, however, is probably controlled by the permeability of underlying bedrock. Therefore it appears that the duration, timing, and magnitude of discharge events in the study area are controlled both directly and indirectly by lithology. Stream power and shear stress estimates derived from bankfull discharge and bed-material size data suggest that higher bedload transport rates and larger bedload particle sizes exist in streams draining crystalline rocks than in streams draining sedimentary terrane. It appears that source-area lithology, by controlling discharge production, also influences stream power, bedload transport capabilities, and therefore total amounts of bedload transport.  相似文献   

15.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A reliable characterization of bedload transport is required to gauge the engineering and theoretical issues related to the dynamics of sediments transport in rivers. However, while significant advances have been made in the development of monitoring techniques, robust quantitative predictive relationships have proven difficult to derive. In this article, we develop a dedicated signal processing technique aimed at improving the usage of impact plate measurements for material transport characterization. Our set‐up consists of a piezoelectric hydrophone mounted on the bottom side of a stainless steel plate, thus acting as a ‘sediment vibration sensor’. While the classical analysis with such systems is usually limited to rather simple procedures, such as impact counting, a large amount of useful information is contained in the actual waveform of the impact signal, which conveys the force and the contact time that the bedload imposes on the plate. An advanced signal processing technique called ‘first arrival atomic decomposition’ is used to improve the characterization of bedload transport by analysing the amplitude and frequency attributes of each single impact. This new processing approach proves to be well suited for bedload transport monitoring using plate systems and allows us to establish a relationship between the median grain size (D50) and the impact signal properties. This link is first observed and validated with controlled flume experiments and then applied to continuous impact records in a small gravel‐bed river during a flood event. The estimated D50 offers a novel possibility to observe the time‐varying grain size distribution of bedload transport. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Various physical and biological properties affect solute transport patterns in streams. We measured hydraulic characteristics of Payne Creek, a low‐gradient upper Coastal Plain stream, using tracer experiments and parameter estimation with OTIS‐P (one‐dimensional transport with inflow and storage with parameter optimization). The primary objective of this study was to estimate the effects of varying discharge, season, and litter accumulation on hydraulic parameters. Channel area A ranged from 0·081 to 0·371 m2 and transient storage area As ranged from 0·027 to 0·111 m2. Dispersion D ranged from 1·5 to 11·1 m2 min−1 and exchange coefficient α ranged from 0·009 to 0·038 min−1. Channel area and dispersion were positively correlated to discharge Q, whereas storage area and exchange coefficient were not. Relative storage size As/A ranged from 0·17 to 0·59, and was higher during fall than other seasons under a similar Q. The fraction of median travel time due to transient storage ranged from 8·8 to 34·5% and was significantly correlated with Q through a negative power function. Both metrics indicated that transient storage was a significant component affecting solute transport in Payne Creek, especially during the fall. Comparison between the measured channel area Ac and A suggested that surface storage was dominant in Payne Creek. During fall, accumulation of leaf litter resulted in larger A and As and lower velocity and D than during other seasons with similar discharge. Seasonal changes in discharge and organic matter accumulation, and dynamic channel morphology affected the magnitude of transient storage and overall hydraulic characteristics of Payne Creek. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Bedload transport measurements in two upland streams are considered as a function of the excess stream power exerted on the bed by the flow. During low flows when the framework gravels remain undisturbed, fine sediments are winnowed from the bed-surface layer once a threshold of 3·4 W m?2 is exceeded and the transport rate is strongly supply limited. However for stream powers in excess of 15 W m?2 framework gravels are mobilized and the efficiency of the transport process approaches a local maximum of about 1 per cent for discharges up to 2/3 of bankfull. An inverse depth dependence in the efficiency of the transport process was noted but although bedload calibre increased as a function of discharge its influence on efficiency could not be demonstrated. However it was suspected that the size-sorting relationships of the bed-material in a number of rivers in relation to the transport efficiency might profitably be examined further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号