首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
1 INTRODUCTIONThe fluvial processes such as transihon of river pattrms, bank chat and advance, sedimentation anderosion of flood plains and channel beds can be Observed in alluvial rivers. These fluvial PrOcesses are allattributed to variations of the sediment caping caPacity of the flow and the erodibillty of bank matrialor soil. A river sechon may be widened by bank erosion and failure.For examPle, a river channel downstream of a reservoir is scoured because the flow released frOm the…  相似文献   

2.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

3.
1 INTRODUCTION River erosion is a complex phenomenon. The rate of bank retreat is determined by flow, bed topography, sediment transport, bank properties, and water quality. Prediction of future river planform changes and the knowledge of river erosion and river meandering are required for land use planning in alluvial river valleys and determining locations for bridges and hydraulic structures. The control of riverbank erosion requires prediction of flow and bed features in a meanderin…  相似文献   

4.
1 INTRODUCTION With advances in computer technology and numerical methods, three-dimensional (3D) mathematical models for sediment transport are gradually applied more often and for more practical projects of hydraulic engineering. Three-dimensional mathematical river models can describe not only the secondary flow, but also the transport, deposition, and erosion of sediment in the river channel and the flood plain. However, at present the theories of sediment transport are not as well de…  相似文献   

5.
River islands are vital geomorphic units in alluvial rivers, and the variation of their morphology and position plays a significant role in regulating flow-sediment transport and channel stability. Based on the theories of minimum energy dissipation theory of fluid movement and river morphodynamics, this study uses the river islands in anabranching channels to analyze the relationship between the shape coefficient of river island and the flow-sediment dynamics under stable equilibrium conditions...  相似文献   

6.
Sediment supply to the lower Jingjiang River will be subject to substantial reduction after the impoundment of the Three Gorges Reservoir, which could result in an excess of carrying capacity and serious bank erosions in the downstream alluvial channel, threatening the bank protection works and the safety of the Jingjiang Dyke. This paper presents a summary of research works concerning the fluvial processes in the lower Jingjiang River and the possible impact of the Three Gorges Reservoir impoundment on the variation of its channel pattern. Three different predictions have been put forward by researchers: 1) the Jingjiang River will evolve towards a more sinuous, meandering channel pattern, with extensive bank erosion taking place along the river; 2) the river channel will be straightened and broadened because no point bar can be formed due to reduced sediment supply while bank erosion develops in the concave bank, and 3) this river reach will maintain its present channel pattern without significant change, although the sinuosity may be slightly reduced, since: a) the Three Gorges Reservoir mainly intercept sediment particles with sizes larger than 0.025mm, and b) the complex interaction between the Yangtze River and the Dongting Lake helps to reduce the negative effect of channel erosion through certain self-adjusting mechanism in fluvial processes. Discrepancy between these predictions shows that further research efforts are needed to understand the impact of Three Gorges Reservoir operation on the downstream fluvial processes. Meanwhile, there is an urgent need to closely monitor future development in the fluvial processes of the Jingjiang River and its influence on the safety of the Jingjiang Dykes.  相似文献   

7.
Study of hydraulic structures such as groins and bandal-like structures can provide valuable information on their influences on morphological processes in natural rivers.These structures usually used for bank protection and formation of deep navigation channel can locally create complex flow patterns,reduce flow velocities and also increase the flood levels.Most of the previous studies are focused on structures like groins under non-submerged flow condition.However,the recent demand of nature friendly low cost and sustainable methods for river bank protection and channel formation leads to the necessity of study different type of structures like bandal-like structures.In this context, this study investigates the flow characteristics and sediment transport process influenced by bandal-like structures through laboratory experiments.The experiments were carried out under live-bed scour condition with sediment supplied from the inlet for two submergence(non-submerged and submerged)conditions.The experimental measurements contribute to better understand the mechanism of deposition/erosion process around different type of hydraulic structures.The performance of bandal-like structures considering the erosion around the structures,the deposition near the bank and the formation of deep main channel show promising results compared with conventional structures such as groins(impermeable and permeable ones).  相似文献   

8.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

9.
The river systems observed today is the cumulative result of surface, rill, and gully erosion, and sediment transport, scour, and deposition. The divisions of approach between these two related areas are man-made, and are not based on sound science. Most of the erosion studies are done by geologists and agricultural engineers who are concerned of the surface,  相似文献   

10.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

11.
12.
This paper describes meandering alluvial rivers with mean annual suspended-sediment concentrations of more than 100 kgm?3 on the Loess Plateau, China, and explains their formation as caused by the effect of hyperconcentrated water flow. When the river is dominated by hyperconcentrated flow, the rate of energy expenditure required for sediment transport declines significantly. Accordingly, the river channel adjusts itself to a lower channel gradient by increasing the river length, resulting in a meandering channel. Since the stable transportation of sediment by hyperconcentrated flow is dependent on river channel boundary conditions, the latter play an important role in the formation of meanders of this kind. The paper also discusses the conditions for the discrimination of meandering and braided rivers in this area.  相似文献   

13.
Quantification of river bedform variability and complexity is important for sediment transport modeling as well as for characterization of river morphology. Alluvial bedforms are shown to exhibit highly nonlinear dynamics across a range of scales, affect local bed roughness, and vary with local hydraulic, hydrologic, and geomorphic properties. This paper examines sediment sorting on the crest and trough of gravel bedforms and relates it to bed elevation statistics. The data analysed here are the spatial and temporal series of bed elevation, grain size distribution of surface and subsurface bed materials, and sediment transport rates from flume experiments. We describe surface topography through bedform variability in height and wavelength and multiscale analysis of bed elevations as a function of discharge. We further relate bedform migration to preferential distribution of coarse and fine sediments on the troughs and crests, respectively, measuring directly surface and subsurface grain size distributions, and indirectly the small scale roughness variations as estimated from high resolution topographic scans.  相似文献   

14.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

15.
In the middle and lower reaches of alluvial rivers, various kinds of river regulation projects affecting natural channel evolution often are distributed due to the requirements of flood control, navigation,and channel stability. However, the influence of large-scale river regulation works on fluvial processes is not fully known. Therefore, a two-dimensional(2D) morphodynamic model has been improved to address this problem. The new detailed procedure is presented in this paper:(i) First, each nod...  相似文献   

16.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A hydrology–sediment modelling framework based on the model Topkapi-ETH combined with basin geomorphic mapping is used to investigate the role of localized sediment sources in a mountain river basin (Kleine Emme, Switzerland). The periodic sediment mobilization from incised areas and landslides by hillslope runoff and river discharge is simulated in addition to overland flow erosion to quantify their contributions to suspended sediment fluxes. The framework simulates the suspended sediment load provenance at the outlet and its temporal dynamics, by routing fine sediment along topographically driven pathways from the distinct sediment sources to the outlet. We show that accounting for localized sediment sources substantially improves the modelling of observed sediment concentrations and loads at the outlet compared to overland flow erosion alone. We demonstrate that the modelled river basin can shift between channel-process and hillslope-process dominant behaviour depending on the model parameter describing gully competence on landslide surfaces. The simulations in which channel processes dominate were found to be more consistent with observations, and with two independent validations in the Kleine Emme, by topographic analysis of surface roughness and by sediment tracing with 10 Be concentrations. This research shows that spatially explicit modelling can be used to infer the dominant sediment production process in a river basin, to inform and optimize sediment sampling strategies for denudation rate estimates, and in general to support sediment provenance studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号