首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Manual digitizing on aerial photographs is still commonly used for characterizing gully erosion over large areas. Even when automated detection procedures are implemented, manual digitizing is frequently being resorted to in order to constitute reference datasets used for training and validation. In both cases, manual digitizing entails some subjective decisions on behalf of the operator, which introduces uncertainty into the resulting datasets. To assess the magnitude of this uncertainty, 11 experienced operators were asked to digitize and classify ephemeral gullies (EGs) on cropland following a standardized methodology. The resulting 11 datasets were compared in terms of number, type and location of EGs. Furthermore, for EGs located on a well‐defined runoff flow concentration axis, the slope versus contributing area topographic thresholds required for initiating gully channels were assessed using four thresholding methods, and compared across the 11 datasets. The operators identified 259 different EGs. However, the number (52–139) and sum total length (8.9–23.7 km) of EGs varied widely across operators. Only 34% of the EGs were digitized by more than half of the operators, and 7% were identified by all. Identification of EGs located on a well‐defined flow concentration axis proved least subjective. The longer the EG and the more fields the EG crossed, the larger the number of operators that were able to identify it. EGs were also most easily identified when located in sugar beet fields as compared to other crops. EG classification and topographic threshold lines were also found to be strongly operator‐dependent. Quantile regression appeared to be one of the most robust thresholding methods. Operator subjectivity when digitizing EGs on orthophotographs introduces uncertainty that should be taken into account in future remote sensing‐based studies of EG erosion whenever they rely, in part or in full, on manual photograph interpretation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The first part of this investigation was aimed at testing the use of a three‐dimensional (3D) digital terrain model and a quasi‐tridimensional (2.5D) digital elevation model obtained by a large series of oblique images of eroded channels taken from consumer un‐calibrated and non‐metric cameras. For two closed earth channels having a different sinuosity, the ground measurement of some cross sections by a profilometer (P) was carried out and their real volume was also measured. The comparison among the three methods (3D, 2.5D, and P) pointed out that a limited underestimation of the total volume always occurs and that the 3D method is characterized by the minimum difference between measured and real volume. For this reason, 3D model can be used as benchmark. In the subsequent part of the investigation, the three ground measurement methods were applied for surveying of an ephemeral gully (EG) channel at the Sparacia area. The morphological and hydraulic variable values of the 24 surveyed cross sections determined by both 2.5D model and profilometer were compared. This comparison showed that the estimate error is generally less than ±10%. The EG measurements carried out by the three methods supported the applicability both of the empirical relationship between EG length and its eroded volume and the theoretical dimensionless relationship among the morphological variables describing the channelized erosion process. Finally, it was demonstrated that the effect of the distance interval on the EG volume measurement by 3D and 2.5D models is negligible for the investigated EG.  相似文献   

4.
Water driven soil erosion is a major cause of land degradation worldwide. Ephemeral gullies (EGs) are considered key contributors to agricultural catchment soil loss. Despite their importance, the parameters and drivers controlling EG dynamics have not been adequately quantified. Here we investigate the effects of rainfall characteristics on EGs, using the physically based landform evolution model (LEM) CAESAR‐Lisflood. An initial goal of this study was to test the feasibility of using a LEM to estimate EG dynamics based on an easily obtainable and moderate spatial resolution (2 × 2 m) Digital Elevation Model (DEM). EG evolution was simulated for two rainfall seasons in a 0.37 km2 agricultural plot situated in a semiarid catchment in central Israel. The 2014 rainfall season was used to calibrate the model and the 2015 season was used for validation. The model overall well predicted the EG network structure and average depth but tended to underestimate the EG length. The effects of rainfall characteristics on EG dynamics were investigated by comparing simulations employing seven rainfall scenarios. Four of these scenarios differ in their overall rainfall volume relative to observed precipitation (+20%, +10%, ?10%, ?20%). The remaining three scenarios vary in the temporal distribution of rainfall during each storm, allowing us to isolate the effect of rainfall intensity on EG evolution. The results show that: (1) EG dynamics strongly correlated with changes in rainfall volume; (2) small‐scale morphological behavior varies between rainfall scenarios, resulting in different meandering and connectivity variability; (3) EG evolution is divided into two main stages, an initial rapid development occurring after the first two weeks of the rainy season, followed by a stable development period; (4) a 12 mm h?1 intensity threshold was observed to initiate and, later, modify EGs; and (5) inner storm rainfall variability can have a considerable effect on EG evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The traditional direct method (i.e. metric ruler and rillmeter) of monitoring rill erosion at plot scale is time consuming and invasive because it modifies the surface of the rilled area. Measuring rill features using a drone‐based technology is considered a non‐invasive method allowing a fast field relief. In the experimental Sparacia area a survey by a quadricopter Microdrones md4‐200 was carried out, and this relief allowed the generation of a Digital Elevation Model (DEM), with a mesh size of 1 cm and a resolution elevation equal to 2 mm, for three plots (L, G and C) affected by rill erosion. At first for the experimental L plot, which is 44 m long, the rill features were surveyed by a ‘manual’ method which was carried out by drawing on the PC screen the rill paths obtained by a visual orthophoto interpretation. This manual method was not applicable for the plots in which rills of limited depth occurred and were not detectable. Then, for both L plot and the other experimental plots having a length ranging from 22 to 44 m, an ‘automatic’ extraction method of rills from DEM was applied. Using an appropriate calculation routine, a vector coverage of transects orthogonal to the main flow direction (i.e. the maximum slope steepness path) was generated. The intersection of each plot DEM with the transect coverage allowed to obtain both the cross sections and the main rill morphological features. For the L plot the comparison between the rill morphological features obtained by the two different methods (manual, automatic) was carried out. Finally, the length–volume relationship and a dimensionless relationship proposed in literature were tested for all studied experimental plots. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
While it has been demonstrated in numerous studies that the aboveground characteristics of the vegetation are of particular importance with respect to soil erosion control, this study argues the importance of separating the influence of vegetation on soil erosion rates into two parts: the impact of leaves and stems (aboveground biomass) and the influence of roots (belowground biomass). Although both plant parameters form inseparable constituents of the total plant organism, most studies attribute the impact of vegetation on soil erosion rates mainly to the characteristics of the aboveground biomass. This triggers the question whether the belowground biomass is of no or negligible importance with respect to soil erosion by concentrated flow. This study tried to answer this question by comparing cross‐sectional areas of concentrated flow channels (rills and ephemeral gullies) in the Belgian Loess Belt for different cereal and grass plant densities. The results of these measurements highlighted the fact that both an increase in shoot density as well as an increase in root density resulted in an exponential decrease of concentrated flow erosion rates. Since protection of the soil surface in the early plant growth stages is crucial with respect to the reduction of water erosion rates, increasing the plant root density in the topsoil could be a viable erosion control strategy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Ephemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gully erosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices.  相似文献   

9.
The objective of this study is to explore in a critical way the potential of high-altitude (stereo) aerial photographs for the assessment of ephemeral gully erosion rates. On 28 May 1995, an intensive rainfall event (30 mm h−1 during 30 min, return period = 3 years) occurred in central Belgium. Ephemeral gullies formed within an area of 218 ha (study area 1) were mapped and measured both in the field and by high-altitude aerial photos taken at the same time. Comparison of these two methods shows that if only one of the two surveying techniques had been used, only 75 per cent of the total ephemeral gully length would have been detected, so that the combination of aerial and field data leads, in fact, to the best possible determination of total gully length within the selected area. A correction factor (C) is proposed, so that the results of an ephemeral gully erosion survey based on high-altitude (stereo) aerial photos can be adjusted for the undetected gullies. Next, a sequential series of high-altitude stereo aerial photographs, taken in six different years, was analysed in order to determine ephemeral gully erosion rates in three selected study areas (study areas 2, 3 and 4). Selection criteria were chosen so that these three areas were similar to study area 1 and representative for the cultivated areas in central Belgium where intense soil erosion regularly occurs. Ephemeral gullies were mapped and their total length was measured from the aerial photos. Using a mean gully cross-section of 0·2635 m2 (determined in study area 1), the average eroded volume is 1·89 m3 ha−1 in six months for study area 1, 0·86 m3 ha−1 in six months for area 2, 1·44 m3 ha−1 in six months for area 3, and 2·37 m3 ha−1 in six months for area 4. According to the correction factor (C), these mean ephemeral gully erosion volumes have to be increased by 44 per cent. The ephemeral gully erosion rates based on high-altitude stereo aerial photos, correspond well with the results of other surveys carried out in the Belgian loess belt. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A simple field‐based monitoring programme was established in a small catchment (area 4·6 km2) to find the rates of gully erosion in the Siwalik Hills, Nepal. The rates are used to estimate the amount of sediment produced by gully erosion in the catchment. Three large and active gullies were selected with areas ranging from 0·44 to 0·78 ha. Aerial photographs taken in 1964, 1978 and 1992 were ortho‐rectified and used to study the dynamics of gully heads. The same gullies were also monitored manually using an orthogonal reference system fixed by erosion pins around the gully heads. Results from the aerial photos indicated that the gullies expanded remarkably over the period from 1964 to 1992, by 34 to 58 per cent. Head‐retreat rates during that period were 0·48, 0·55 and 0·73 m a?1 and average annual sediment evacuation was estimated as 2534 ± 171, 959 ± 60 and 2783 ± 118 m3 a?1 for the three gullies respectively. From the field measurement, estimated volumes were found to vary from 731 ± 57 to 2793 ± 201 m3 a?1 over the monitoring period of two years. It was also found that the gullies produce sediment which accounts for up to 59 per cent of the sediment produced from surface erosion in the headwater catchment. The findings are useful for planning and executing appropriate control measures and constructing a sediment hazard map at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports the results of a field investigation aimed to establish morphological similarity between rills and ephemeral gullies. Rill measurements were made on 14 plots having a surface area of 22–352 m2 located on a 14·9% slope and on a plot 6·0 m wide and 22·0 m long having a uniform 22·0% slope. The plots are located on the experimental station for soil erosion measurements, ‘Sparacia’, of the Agricultural Faculty of Palermo University, in Sicily, Italy. All plots are subjected to natural rainfall. The measurements were made immediately following five events between November 2004 and December 2005. The ephemeral gully measurements were made on a cultivated area of about 120 ha, located in Central Sicily, which is representative of many soil‐crop conditions in the Mediterranean basin. The morphological similarity between rill and ephemeral gully was first tested. Then a power relationship between rill or gully volume and length, theoretically deduced by dimensional analysis and self‐similarity theory, was applied. This power relationship needs a different scale factor for rill and gully measurements. Finally, using two dimensionless groups representative of the channel morphology variables, the analysis showed that a single relationship can be applied to rill and gully measurements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The process of rill erosion causes significant amounts of sediment to be moved in both undisturbed and disturbed environments and can be a significant issue for agriculture as well as mining lands. Rills also often develop very quickly (from a single rainfall event to a season) and can develop into gullies if sufficient runoff is available to continue their development. This study examines the ability of a terrestrial laser scanner to quantify rills that have developed on fresh and homogeneous mine spoil on an angle of repose slope. It also examines the ability of the SIBERIA erosion model to simulate the rill's spatial and temporal behaviour. While there has been considerable work done examining rill erosion on rehabilitated mine sites and agricultural fields, little work has been done to examine rill development at angle of repose sites. Results show that while the overall hillslope morphology was captured by the laser scanner, with the morphology of the rills being broadly captured, the characteristics of the rills were not well defined. The digital elevation model created by the laser scanner failed to capture the rill thalwegs and tops of the banks, therefore delineating a series of ill defined longitudinal downslope depressions. These results demonstrate that an even greater density of points is needed to capture sufficient rill morphology. Nevertheless, SIBERIA simulations of the hillslope demonstrated that the model was able to capture rill behaviour in both space and time when correct model parameters were used. This result provides confidence in the SIBERIA model and its parameterization. The results demonstrate the sensitivity of the model to changes in parameters and the importance of the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Knowledge of soil loss rates by water erosion under given climate, soil, topography, and management conditions is important for establishing soil conservation schemes. In Galicia, a region with Atlantic climatic conditions in Spain, field observations over the last decade indicate that interrill, rill and ephemeral gully erosion may be an important sediment source. The aim of this work was to assess concentrated erosion rates, describe types of rills and ephemeral gullies and determine their origin, evolution and importance as sediment sources. Soil surface state and concentrated flow erosion were surveyed on medium textured soils, developed over basic schists of the Ordenes Complex series (Coruña province, Spain) from 1997 to 2006. Soil surface state was characterized by crust development, tillage features and roughness degree. Soil erosion rate was directly measured in the field. Concentrated flow erosion took place mainly on seedbeds and recently tilled surfaces in late spring and by autumn or early winter. During the study period, erosion rates were highly variable and the following situations could be distinguished: (a) no incision or limited rill incision, i.e. below 2 Mg ha?1 year?1; (b) generalized rill and ephemeral gully incision in the class of mean values between 2·5 and 6·25 Mg ha?1 year?1, this was the most common erosion pattern; and (c) heavy erosion as observed during an extremely wet winter period, between October 2000 and February 2001, with erosion figures that may be about ten orders of magnitude higher, up to 55–60 Mg ha?1 year?1. Therefore, low values of soil losses are dominant, but also large values of rill and ephemeral gully erosion occurred during the study period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

17.
Solar radiation-controlled microclimatic variation has been considered a major force on hillslope evolution via feedback among geomorphology, vegetation, soil and hydrology. In this study, we investigate the influence of solar radiation on hillslope dynamics on Santa Catalina Island, CA by comparing hillslope morphology and frequency–magnitude relationships of shallow landslides, rills and gullies on slopes receiving low annual solar radiation (LSR) and high annual solar radiation (HSR), which were found equivalent to north- and south-facing slopes, respectively. LSR slopes on Santa Catalina Island were found more vegetated compared to HSR slopes. LiDAR elevation-derived hillslope morphology showed LSR slopes steeper, rougher and more concave than HSR slopes. Similarly, frequency–magnitude plots showed larger relative frequency of high-magnitude shallow landslides, rills and gullies on LSR slopes, and low-magnitude shallow landslides, rills and gullies on HSR slopes. We argue that the morphology, mass movement and erosion characteristics of LSR and HSR slopes reflect the process–response of microclimate-controlled variation in type and density of vegetation cover, soil physical properties – including moisture, texture, structure, infiltration and erodibility – and surface and subsurface hydrology. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

19.
IntheLoessPlateau,alongtheslopelengthfromthetoptothebottom,soilerosionischaracterizedbyobviousverticalzonaldivision,thatis,sheeterosionzone,sheeterosionandrillerosionzone,rillerosionandshallowgullyerosionzoneandgullyerosionzone.Inthesheetandrillero..sionzone,rillerosionamounttakesup70%ofthetotalsoilloss[TANGKenetal.,1983,ZHENGFenlietal.,19871;intherillandshallowgullyerosionzone,rillerosionamountaccountsfor30--40%ofthetotalsoilloss.Sorillerosionisamajorerosionpatternonsteepslopeland.Riller…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号