首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In order to determine the effect of bed roughness on velocity distribution, we used seven different configurations of bed roughness, with 16 test runs of varying discharge and slope for each configuration. For each run, one-dimensional velocity profiles were measured at 1 cm vertical increments over the crest of the roughness element, and at intervals of 4·25 cm downstream. Results indicate that velocity profile shape remains fairly constant for a given slope and roughness configuration as discharge increases. As slope increases, the profiles become less linear, with a much larger near-bed velocity gradient and a more pronounced velocity peak close to 0·6 flow depth at the measurement point immediately downstream from the roughness element. The zone of large near-bed velocity gradients increases in both length and depth as roughness concentration decreases, up to a length/height ratio of about 9, at which point maximum flow resistance occurs. Longitudinal roughness elements do not create nearly as much flow resistance as do transverse elements. Rates of velocity increase suggest that roughness elements spaced at a length/height ratio of about 9 are most effective at creating flow resistance over a range of discharges in channels with steeper slopes. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
高边坡在水平动荷载作用下的动力响应规律研究   总被引:4,自引:1,他引:4  
高岩石边坡在水平动荷载作用下的动力响应规律是有关工程界十分关心的问题。本文通过大量的数值模拟分析对边坡的动力响应规律进行研究,发现了高岩石边坡在水平动荷载下动力响应的加速度、速度、位移三量放大系数等值线在边坡剖面上分布的规律性特点。对于一定的岩土体材料,当边坡高度在一定时,边坡动力响应的加速度、速度、位移三量会随着边坡角度的增大而减小;当边坡的角度一定时,边坡动力响应的加速度、速度、位移三量会随着边坡高度的增加而放大;边坡的下覆岩层的材料特性对于边坡的动力响应的加速度、速度、位移三量的放大作用的影响具有一定的规律性;边坡动力响应的加速度、速度二量受动荷载的特征周期影响较位移明显,具有一定的规律性。边坡的边缘部位对振动的反应幅值较之内部存在放大现象,坡度决定了三量分布的等值线方向的走向。其结论性成果体现了高岩石边坡的地震动力响应特征,为高边坡工程提供理论基础和实践依据。  相似文献   

4.
A survey of flows was conducted at a river confluence with coarse bed material. Bridges were installed on both tributaries, at the confluence and farther downstream on the receiving stream. At these stations, flow velocities were measured over a dense grid for seven conditions ranging from very low flows to the bankfull stage. Hydraulic geometry relationships established at all four stations revealed that flow is accelerated through the confluence as stage rises. At bankfull discharge, average velocity is 1.6 times higher at the confluence than on either tributary. Flow acceleration occurs at and above intermediate flow stages and is concentrated at the centre of a linear pool located at the confluence. The development of a zone of high shear stress is also associated with the cell of high flow velocity. Flow acceleration is dissipated at the exit of the pool where water surges over boulder ribs. The acceleration is not related to the development of flow separation zones as observed by Best and Reid (1984) for wide junction angles, nor is it explained by the reduction of the friction exerted by the banks. Acceleration is associated with the plan geometry of the confluence, with the lateral slopes which permit water to converge, and with a reduction in grain roughness at the confluence. Owing to the curvature of the tributary and to the acute angle of entry, relative power losses through the confluence decrease with increasing stages.  相似文献   

5.
考虑边坡地形效应的地震动力响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
地震滑坡往往会造成巨大的人员伤亡和财产损失,而边坡在地震作用下的响应规律是研究地震边坡稳定性的首要问题。本研究利用FLAC3D有限差分软件建立多个边坡模型,进行边坡地形效应的地震动力响应分析,考虑的地形主要包括坡高、坡角、坡面形状等三方面的因素。将选取的地震波作用于不同模型,分析坡面加速度、速度放大比及坡顶坡脚傅里叶谱值,研究边坡几何形态对边坡地震响应的影响。结果表明,坡高对坡面的速度放大影响明显,坡角对坡面加速度放大效果较强,而不同的坡面形状会造成不同的加速度响应规律,凹面坡加速度放大效果更小一些。该研究有助于地震边坡的稳定性分析并为边坡工程的抗震设计提供参考。  相似文献   

6.
The effect of fully submerged boulders on the flow structure in channels has been studied by some researchers. However, many natural streams have bed material with boulders that are not fully submerged under water. In many natural streams, boulders cover between 1% and 10% of the area of the stream reach. The effect of non-submerged boulders on the velocity profile and flow characteristics is very important for assessing riverbed deformation. The objectives of this paper are to find the pattern of velocity distribution around a non-submerged boulder and to compare it with the classical studies on flow resistance and Reynolds stress distribution in open channels. Also, by considering the variation in the Reynolds stress distribution at different locations around a non-submerged boulder, the effect of a non-submerged boulder on the estimation of shear velocity and resistance to flow has been investigated. Results indicates that inside the scour hole caused by a non-submerged boulder in a river velocity distributions are irregular. However, velocity distributions are regular outside the scour hole. The presence of the boulder causes a considerable deviation of the Reynolds shear stress from the classic distribution, showing a non-specific distribution with negative values. The classical methods for calculating shear velocity are not suitable because these methods do not give detailed velocity and Reynolds stress distributions in natural rivers with a lot of boulders. Thus, the effect of a non-submerged boulder on the estimation of the resistance to flow by considering the variations in velocity and Reynolds stress distributions at different locations around a non-submerged boulder is important and needs to be studied in a natural river instead of just in laboratory flumes. The negative values in Reynolds stress distribution around a boulder indicate that the classical methods are unable to predict resistance to flow, and also show strong turbulence inside the scour hole where the complex flow conditions present ambiguous Reynolds stress distributions. In the current study, to obtain a reasonable estimation of parameters in natural rivers, the classical method has been modified by considering velocity and Reynolds stress distributions through the boundary layer method.  相似文献   

7.
In this experimental study,field observations and laboratory experiments have been carried out to assess the impacts of the vegetated channel walls and aspect ratio on flow velocity profiles,shear stress distribution and roughness coefficient of channel.Results show that the presence of vegetation cover on channel wall causes deviation of the Reynolds stress distribution from the linear one under uniform flow condition.It is also noticed that the Reynolds stress distribution is influenced by the aspect rati...  相似文献   

8.
In this experimental study,the turbulent flow in a channel with vegetation by using sprouts of wheat on channel bed was investigated.Two different aspect ratios of channel were used.An Acoustic Doppler Velocimetry was used to measure parameters of turbulent flow over submerged sprouts of wheat,such as velocity profiles.The log law and the Reynolds shear stress distribution were applied. Results indicate that the position of the maximum turbulence intensity superposes on the inflection point situated over the top of submerged vegetation cover.Quadrant analysis shows that near the vegetation bed,the sweeps and ejections appear to be the most dominant phenomenon,while far from the vegetated bed,the outward is dominant event.Results also show that the aspect ratio plays an important role on the contribution of the different bursting events for Reynolds stress determination.  相似文献   

9.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Non‐uniform flows encompassing both accelerating and decelerating flows over a cobble‐bed flume have been experimentally investigated in a flume at a scale of intermediate relative submergence. Measurements of mean longitudinal flow velocity u, and determinations of turbulence intensities u′, v′, w′, and Reynolds shear stress ?ufwf have been made. The longitudinal velocity distribution was divided into the inner zone close to the bed and the outer zone far from the bed. In the inner zone of the boundary layer (near the bed) the velocity profile closely followed the ‘Log Law’; however, in the outer zone the velocity distribution deviated from the Log Law consistently for both accelerating and decelerating flows and the changes in bed slopes ranging from ?2% to + 2% had no considerable effect on the outer zone. For a constant bed slope (S = ±0·015), the larger the flow rate, the smaller the turbulence intensities. However, no detectable pattern has been observed for u′, v′ and w′ distributions near the bed. Likewise, for a constant flow rate (Q = 0·040 m3/s), with variation in bed slope the longitudinal turbulent intensity profile in the longitudinal direction remained concave for both accelerating and decelerating flows; whereas vertical turbulent intensity (w′) profile presented no specific form. The results reveal that the positions of maximum values of turbulence intensities and the Reynolds shear stress depend not only on the flow structure (accelerating or decelerating) but also on the intermediate relative submergence scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic simulation on hydraulic characteristic values of overland flow   总被引:1,自引:0,他引:1  
The economic forest management is one of the main land use models on low hill gentle slope. In order to investigate the soil erosion properties of bare slope under economic forest, dynamic simulation on hydraulic characteristic values of overland flow was carried out under 0.5 mm min?1, 1.2 mm min?1 and 1.8 mm min?1 rainfall intensities. Results indicated that runoff shear stress increased with increasing of slope length and their relationship can be described by quadratic equation. There were abnormal points at the length of 4 m and 5.5 m under rainfall intensity of 1.8 mm min?1. The shallow flow was pseudo-laminar flow under 0.5 mm min?1, 1.2 mm min?1 and 1.8 mm min?1 rainfall intensities, and the runoff at upslope was sluggish flow then changed to torrential flow at downslope with increasing of slope length. Critical Reynolds number varied from sluggish flow to torrential flow with 1.8 mm min?1 rainfall intensity and was more than that under 0.5 mm min?1. Reynolds number can be estimated by power function of slope length. And there was a positive correlation between runoff shear stress and both Froude number Fr and Reynolds number Re. We hope this study can provide scientific gist for soil erosion control under economic forest.  相似文献   

15.
断裂构造对斜坡应力场影响的数值模拟及成灾机理研究   总被引:2,自引:0,他引:2  
断裂构造及活动强度对斜坡体的应力场分布具有重要的影响。采用基于强度折减法的有限元法,分别以正断层和逆断层与斜坡体的组合关系为例,剖析了断裂构造对斜坡体应力场的影响及成灾机理,揭示了含有断层的斜坡体塑性区的贯通过程。研究表明,包含断层的斜坡体在应力分布特征及斜坡变形破坏机理方面与无断层的斜坡体有较大差别:含断层的斜坡体在坡面和断层面附近的最大主应力迹线与坡面或断层面相平行,在天然状态下,塑性区同时出现在坡脚和断层面后方,随着折减系数的增大,塑性区分别从坡脚和断层面后方向坡体深部和上部发展,直至断层面前后两个塑性区相贯通,坡体发生破坏,并且对坡体变形破坏的影响程度以逆断层最强,其次为正断层,断层不活动时较弱。  相似文献   

16.
《国际泥沙研究》2020,35(1):42-56
Submerged vanes are hydrofoils utilized to manage the sediment transport through the river by generating the turbulence in the flow in the form of helical currents.The vanes are placed in the flow with respect to its direction at angle of 10°to 40°.In the current study,an attempt has been made to study the effect of the introduction of vanes in form of rows on parameters like turbulence intensities,Reynolds stresses,turbulent kinetic energy,anisotropy index,and the velocity profile of the flow.It is observed that the profile of variation of turbulence intensities,turbulent kinetic energy,vertical Reynolds stress and velocity over three different marked verticals on a transect are nearly identical whereas a large scatter is observed in the variation of transverse Reynolds stress over the vertical of the aforementioned vertical locations.This observation suggests that flow turbulence is homogeneous over the vertical while scattering in the variation of the transverse Reynolds stress component may be attributed to the presence of secondary currents in the flow.After introducing rows of submerged vanes,the bed turbulence is reduced,hence,helping reduce many scour related phenomenon.It is also observed that a vortex occurred at 0.85 times the height of the vane and the variation of turbulence quantities in the presence of vanes shows the existence of a peak in these quantities.It is observed that as flow moves away from the vane rows,due to the interaction of vortices and the action of vorticity,vortices dampens down and the flow regains homogeneity.After the introduction of submerged vane rows,bed shear stress reduces as fluid from the surface replaces the slow-moving fluid near the bed due to the secondary currents generated by the vanes leading to reduction in the magnitude of turbulence intensities,Reynolds stresses,and turbulent kinetic energy near the bed.The anisotropy index is observed to increase near the bed as induced secondary currents enhanced the turbulence production in the near bed region.All the profiles of parameters obtained in the current study show the existence of a peak or inflexions at a height of 0.85 H from bed(Where,H is the height of the submerged vane).Profiles of parameters obtained in the current study suggest that as the vorticity dampens the vane-generated secondary currents,the scattering in the profiles along the vertical reduces and profiles are observed to regain the variation which they had before the introduction of vane rows,suggesting that flow turbulence has regained its homogeneity.  相似文献   

17.
The effects of aquatic macrophytes on flow and turbulence were studied in a tightly curving meander bend. Three field measurement campaigns were carried out within a one year period to capture effects of seasonal changes in macrophyte cover. They comprised three‐dimensional velocity measurements and mappings of vegetation cover and bathymetry. Flow accelerates and converges over the run into an axial pool in a jet‐like flow pattern bordered by outer and inner bank flow separation zones. The jet and widening of the cross‐section anticipate helical flow until the second half of the bend, where an asymmetric pool developed. Submerged vegetation at the riffles preserves the jet at much lower discharges during the summer period by concentrating high momentum fluid near the surface. Plants locally modify the velocity and stress patterns, reduce bed shear stresses, create zones of fine sediment accumulation and reinforce the bed and banks with roots and rhizomes. Plant patches colonising the banks and the point bar confine secondary flow cells laterally and affect shape and magnitude of the transverse flow profiles near their edges. The morphology of the bend was very stable over the observation period and neither bank erosion nor pool scouring occurred. However, fine sediments accumulate within vegetation patches and in the recirculation zones while the remaining open areas tend to erode slightly. With the decay of macrophytes in winter, sediment accumulations are mobilised again and the bathymetry levels, supporting cyclic models of morphologic change in vegetated bends. In the second part of the paper, semi‐empirical models for the three predominant flow types were tested and discussed; velocity and stress models of vegetated mixing layers and plane turbulent jets, and Rozovskii's model for the transverse flow in bends. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Effect of variability in surface roughness on overland flow from different geometric surfaces is investigated using numerical solution of diffusion wave equation. Three geometric surfaces rectangular plane, converging and diverging plane at slopes 1 to 3% are used. Overland flow is generated by applying rainfall at constant intensity of 10 mm/h for period 30 min and 100 min. Three scenarios of spatial roughness conditions viz. roughness increasing in downstream direction, roughness decreasing in downstream direction and roughness distributed at random are considered. Effect of variability of roughness on overland flow in terms of depth, velocity of flow and discharge along the distance from upstream to downstream for different geometric surfaces are discussed in detail. Results from the study indicate that roughness distribution has significant effect on peak, time to peak and overall shape of the overland flow hydrograph. The peak occurs earlier for the scenario when roughness increases in downstream direction as compared to scenario when roughness is decreasing in downstream for all three geometric surfaces due to very low friction factor and more velocity at the top of the domain. The converging plane attains equilibrium state early as compared to rectangular and diverging plane. Different set of random values result in different time to peak and shape of hydrograph for rectangular and diverging plane. However, in case of converging plane, the shape of computed hydrographs remains almost similar for different sets of random roughness values indicating stronger influence of converging geometry than effect due to variation of roughness sequence on computed runoff hydrograph. Hierarchically, the influence of geometry on overland flow is stronger than the influence of slope and the influence of slope is stronger than the influence of roughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This study is aimed at investigating the vertical velocity profile of flow passing over a vegetal area by an analytical approach. The soil ground is considered as pervious and thus non-zero velocity at the ground surface can be estimated. The soil and vegetation layers are regarded as homogeneous and isotropic porous media. Therefore the solution of the flow can be obtained by applying the theory of turbulent flow and Biot’s theory of poroelasticity after dividing the flow field into three layers: homogenous water, vegetation and pervious soil. The velocity distribution is compared with the experimental data of [Rowiński PM, Kubrak J. A mixing-length model for predicting vertical velocity distribution on flows through emergent vegetation. J Hydrol Sci 2002;47(6):893–904] to show its validity. In addition, five dimensionless parameters denoting the variation of slope, permeability of soil, Reynolds stress, density of vegetation, and relative height of vegetation are proposed to reveal their effects on the surface water flow. The analytical solutions of flow velocity can also be simplified into simpler expressions to describe the flow passing over a non-vegetated area.  相似文献   

20.
Flow near a model spur dike with a fixed scoured bed   总被引:1,自引:0,他引:1  
Three-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed scoured bed with a submerged spur dike. Three-dimensional flow velocities were measured at 3,484 positions around the trapezoidal shaped submerged model spur dike. General velocity distributions and detailed near field flow structures were revealed by the measurement. Clear differences were revealed between flow over fixed flat and scoured beds. Strong lateral flows were the dominant cause of the observed local scour. Shear stresses were higher for the scoured bed than in the flat bed case. Decreasing rates of scour as the scour hole developed were attributed to increases in critical shear stress in the scour holes caused by the increase in the length and magnitude of adverse slopes associated with the two main scour holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号