首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper investigates the relative merits and effectiveness of cross‐hole resistivity tomography using different electrode configurations for four popular electrode arrays: pole–pole, pole–bipole, bipole–pole and bipole–bipole. By examination of two synthetic models (a dipping conductive strip and a dislocated fault), it is shown that besides the popular pole–pole array, some specified three‐ and four‐electrode configurations, such as pole–bipole AMN, bipole–pole AMB and bipole–bipole AMBN with their multispacing cross‐hole profiling and scanning surveys, are useful for cross‐hole resistivity tomography. These configurations, compared with the pole–pole array, may reduce or eliminate the effect of remote electrodes (systematic error) and yield satisfactory images with 20% noise‐contaminated data. It is also shown that the configurations which have either both current electrodes or both potential electrodes in the same borehole, i.e. pole–bipole AMN, bipole–pole ABM and bipole–bipole ABMN, have a singularity problem in data acquisition, namely low readings of the potential or potential difference in cross‐hole surveying, so that the data are easily obscured by background noise and yield images inferior to those from other configurations.  相似文献   

2.
In this paper, we discuss the effects of anomalous out‐of‐plane bodies in two‐dimensional (2D) borehole‐to‐surface electrical resistivity tomography with numerical resistivity modelling and synthetic inversion tests. The results of the two groups of synthetic resistivity model tests illustrate that anomalous bodies out of the plane of interest have an effect on two‐dimensional inversion and that the degree of influence of out‐of‐plane body on inverted images varies. The different influences are derived from two cases. One case is different resistivity models with the same electrode array, and the other case is the same resistivity model with different electrode arrays. Qualitative interpretation based on the inversion tests shows that we cannot find a reasonable electrode array to determine the best inverse solution and reveal the subsurface resistivity distribution for all types of geoelectrical models. Because of the three‐dimensional effect arising from neighbouring anomalous bodies, the qualitative interpretation of inverted images from the two‐dimensional inversion of electrical resistivity tomography data without prior information can be misleading. Two‐dimensional inversion with drilling data can decrease the three‐dimensional effect. We employed two‐ and three‐dimensional borehole‐to‐surface electrical resistivity tomography methods with a pole–pole array and a bipole–bipole array for mineral exploration at Abag Banner and Hexigten Banner in Inner Mongolia, China. Different inverse schemes were carried out for different cases. The subsurface resistivity distribution obtained from the two‐dimensional inversion of the field electrical resistivity tomography data with sufficient prior information, such as drilling data and other non‐electrical data, can better describe the actual geological situation. When there is not enough prior information to carry out constrained two‐dimensional inversion, the three‐dimensional electrical resistivity tomography survey is the better choice.  相似文献   

3.
A validation experiment, carried out in a scaled field setting, was attempted for the long electrode electrical resistivity tomography method in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock‐up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The long electrode results were compared to results from conventional point electrodes on the surface and buried within the survey domain. Using a pole‐pole array, both point and long electrode imaging techniques identified the lateral extents of the pre‐formed plume with reasonable fidelity but the long electrode method was handicapped in reconstructing vertical boundaries. The pole‐dipole and dipole‐dipole arrays were also tested with the long electrode method and were shown to have the least favourable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole‐dipole and dipole‐dipole arrays was attributed to an inexhaustive and non‐optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole‐dipole and dipole‐dipole arrays using long electrodes were shown to have significantly higher average and maximum values within the matrix than any pole‐pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole‐dipole and dipole‐dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.  相似文献   

4.
An algorithm for the two-dimensional (2D) joint inversion of radiomagnetotelluric and direct current resistivity data was developed. This algorithm can be used for the 2D inversion of apparent resistivity data sets collected by multi-electrode direct current resistivity systems for various classical electrode arrays (Wenner, Schlumberger, dipole-diplole, pole-dipole) and radiomagnetotelluric measurements jointly. We use a finite difference technique to solve the Helmoltz and Poisson equations for radiomagnetotelluric and direct current resistivity methods respectively. A regularized inversion with a smoothness constrained stabilizer was employed to invert both data sets. The radiomagnetotelluric method is not particularly sensitive when attempting to resolve near-surface resistivity blocks because it uses a limited range of frequencies. On the other hand, the direct current resistivity method can resolve these near-surface blocks with relatively greater accuracy. Initially, individual and joint inversions of synthetic radiomagnetotelluric and direct current resistivity data were compared and we demonstrated that the joint inversion result based on this synthetic data simulates the real model more accurately than the inversion results of each individual method. The developed 2D joint inversion algorithm was also applied on a field data set observed across an active fault located close to the city of Kerpen in Germany. The location and depth of this fault were successfully determined by the 2D joint inversion of the radiomagnetotelluric and direct current resistivity data. This inversion result from the field data further validated the synthetic data inversion results.  相似文献   

5.
A cross-hole Electrical Resistivity Tomography (ERT) study was undertaken near the center of Thessaloniki in order to detect the depth of the existing city walls in the planned route of the new city underground train. This cross-hole setup was used for a study of measurements with various electrode arrays in real urban field conditions to evaluate the resolution of the models which is produced by each array and the reliability of the models which is produced by the newly published “MOST” technique. The pole–tripole array (C2–C1P1P2) produces high resolution models, even when only borehole electrodes are used. The bipole–bipole C1C2–P1P2 array, when used for cross-hole measurements only, produces higher resolution models compared to the C1P1–C2P2 array, even with a lower signal-to-noise ratio, which can result in extremely high RMS error, when noise, systematic or not, must be faced. The models of both arrays are greatly improved by the use of surface electrodes. The pole–bipole array (C1–P1P2) is proved to be less accurate in imaging and quite unstable to the noisy urban environment and to systematic errors. Furthermore, the Model Stacking (MOST) interpretation technique leads to better results with models of greater resolution and fewer artifacts compared even with the combined data inversion. Finally, the ERT cross-hole analysis has been reliable in detecting the city walls.  相似文献   

6.
A numerical comparison of 2D resistivity imaging with 10 electrode arrays   总被引:9,自引:0,他引:9  
Numerical simulations are used to compare the resolution and efficiency of 2D resistivity imaging surveys for 10 electrode arrays. The arrays analysed include pole‐pole (PP), pole‐dipole (PD), half‐Wenner (HW), Wenner‐α (WN), Schlumberger (SC), dipole‐dipole (DD), Wenner‐β (WB), γ‐array (GM), multiple or moving gradient array (GD) and midpoint‐potential‐referred measurement (MPR) arrays. Five synthetic geological models, simulating a buried channel, a narrow conductive dike, a narrow resistive dike, dipping blocks and covered waste ponds, were used to examine the surveying efficiency (anomaly effects, signal‐to‐noise ratios) and the imaging capabilities of these arrays. The responses to variations in the data density and noise sensitivities of these electrode configurations were also investigated using robust (L1‐norm) inversion and smoothness‐constrained least‐squares (L2‐norm) inversion for the five synthetic models. The results show the following. (i) GM and WN are less contaminated by noise than the other electrode arrays. (ii) The relative anomaly effects for the different arrays vary with the geological models. However, the relatively high anomaly effects of PP, GM and WB surveys do not always give a high‐resolution image. PD, DD and GD can yield better resolution images than GM, PP, WN and WB, although they are more susceptible to noise contamination. SC is also a strong candidate but is expected to give more edge effects. (iii) The imaging quality of these arrays is relatively robust with respect to reductions in the data density of a multi‐electrode layout within the tested ranges. (iv) The robust inversion generally gives better imaging results than the L2‐norm inversion, especially with noisy data, except for the dipping block structure presented here. (v) GD and MPR are well suited to multichannel surveying and GD may produce images that are comparable to those obtained with DD and PD. Accordingly, the GD, PD, DD and SC arrays are strongly recommended for 2D resistivity imaging, where the final choice will be determined by the expected geology, the purpose of the survey and logistical considerations.  相似文献   

7.
The use of optimized arrays generated using the ‘Compare R’ method for cross‐borehole resistivity measurements is examined in this paper. We compare the performances of two array optimization algorithms, one that maximizes the model resolution and another that minimizes the point spread value. Although both algorithms give similar results, the model resolution maximization algorithm is several times faster. A study of the point spread function plots for a cross‐borehole survey shows that the model resolution within the central zone surrounded by the borehole electrodes is much higher than near the bottom end of the boreholes. Tests with synthetic and experimental data show that the optimized arrays generated by the ‘Compare R’ method have significantly better resolution than a ‘standard’ measurement sequence used in previous surveys. The resolution of the optimized arrays is less if arrays with both current (or both potential) electrodes in the same borehole are excluded. However, they are still better than the ‘standard’ arrays.  相似文献   

8.
Resistivity in horizontal boreholes can give useful detailed information about the geological conditions for construction in rock, i.e. in front of a tunnel bore machine. This paper is an attempt to identify a suitable methodology for an effective measuring routine for this type of geophysical measurements under actual construction site conditions.Prior to any measurements numerical modelling was done in order to evaluate the resolution of different electrode arrays. Four different arrays were tested; dipole–pole, cross-hole dipole–dipole, cross-hole pole–tripole and multiple gradient array. Additionally the resolution of a combination of cross-hole dipole–dipole and multiple gradient was assessed. The 2D sensitivity patterns for various arrangements of the cross-hole dipole–dipole and multiple gradient array were examined. The sensitivity towards inaccurate borehole geometry and the influence of water in the boreholes were also investigated. Based on the model study the cross-hole dipole–dipole array, multiple gradient array and a combination of these were found to give the best result and therefore were used for test measurements in horizontal boreholes. The boreholes were 28.5 m long and drilled 6.5 m apart. Prototypes of semi-rigid borehole cables made it possible to insert multi electrode cables in an efficient way, allowing fast measurement routines. These measurements were then studied to determine their accuracy and applicability. The results showed a high resistivity rock mass at the site. A transition from high resistivity to slightly lower resistivity coincides well with a change in lithology from gneiss-granite to gneiss. It is likely that the shotcrete on the tunnel wall is seen as a low resistivity zone.The measurements are a valuable tool, but further development of the cables and streamlining of measuring routines have to be performed before the resistivity tomography can be used routinely in pilot holes during construction in rocks.  相似文献   

9.
电阻率层析成像是一种广泛应用在水文、考古和地质等浅地表勘探领域的地球物理方法。为了增强电阻率层析成像的分辨率、应对复杂的地质问题,本文提出基于雅可比矩阵的不同电极阵列直流电阻率数据的加权联合反演算法,并以温纳和偶极-偶极电极阵列数据为例,在理论模型和古墓探测的野外实例中测试该算法的有效性。结果表明,加权联合反演结果的横向和纵向分辨率都优于单一电极阵列的反演结果,并在实例中缓解“U形”电极阵列的固有缺陷、减少反演模糊性、更好地约束墓室宽度的反演结果。   相似文献   

10.
In order to couple spatial data from frequency‐domain helicopter‐borne electromagnetics with electromagnetic measurements from ground geophysics (transient electromagnetics and radiomagnetotellurics), a common 1D weighted joint inversion algorithm for helicopter‐borne electromagnetics, transient electromagnetics and radiomagnetotellurics data has been developed. The depth of investigation of helicopter‐borne electromagnetics data is rather limited compared to time‐domain electromagnetics sounding methods on the ground. In order to improve the accuracy of model parameters of shallow depth as well as of greater depth, the helicopter‐borne electromagnetics, transient electromagnetics, and radiomagnetotellurics measurements can be combined by using a joint inversion methodology. The 1D joint inversion algorithm is tested for synthetic data of helicopter‐borne electromagnetics, transient electromagnetics and radiomagnetotellurics. The proposed concept of the joint inversion takes advantage of each method, thus providing the capability to resolve near surface (radiomagnetotellurics) and deeper electrical conductivity structures (transient electromagnetics) in combination with valuable spatial information (helicopter‐borne electromagnetics). Furthermore, the joint inversion has been applied on the field data (helicopter‐borne electromagnetics and transient electromagnetics) measured in the Cuxhaven area, Germany. In order to avoid the lessening of the resolution capacities of one data type, and thus balancing the use of inherent and ideally complementary information content, a parameter reweighting scheme that is based on the exploration depth ranges of the specific methods is proposed. A comparison of the conventional joint inversion algorithm, proposed by Jupp and Vozoff ( 1975 ), and of the newly developed algorithm is presented. The new algorithm employs the weighting on different model parameters differently. It is inferred from the synthetic and field data examples that the weighted joint inversion is more successful in explaining the subsurface than the classical joint inversion approach. In addition to this, the data fittings in weighted joint inversion are also improved.  相似文献   

11.
The applicability of three kinds of electrode configurations used to delineate a buried horizontal pipe was studied. A 3D resistivity imaging survey was carried out along eight parallel lines using pole-pole, pole-dipole, and dipole-dipole arrays with 1m minimum electrode spacings. Roll-along measurements were carried out to cover a rectangular grid. The 2D and 3D least squares algorithms based on the robust inversion method were used in the inversion of the apparent resistivity data sets. The 2D inversion of data sets could not delineate the orientation and dimension of the subsurface anomalies clearly. To obtain more accurate results, a 3D joint inversion of the pole-pole and pole-dipole data sets was performed, as well as of pole-pole and dipole-dipole data sets. In this case, both horizontal and vertical dimensions of subsurface structures were resolved. The resulting model obtained from each array was compared to those of joint inversion method. The result showed that the horizontal resolution does not improve so much as that in the vertical direction when joint inversion is applied.  相似文献   

12.
Modern optimization approaches for electrode configurations can significantly improve the resolution of 2.5D resistivity imaging surveys. This study presents a brief review of the 2.5D optimization approach, particularly for borehole–borehole surveys with applications for mapping virtual CO2 plumes sequestrated in deep saline reservoir formations. The applied algorithm searches for arrays that maximize the spatial resolution of the survey among the comprehensive dataset of best possible spatial resolution (i.e. least temporal resolution). A main goal of this study is to increase the temporal resolution of ERT borehole–borehole surveys by selecting optimized electrode configurations in order to minimise the required data acquisition time while sustaining a high spatial resolution. The optimized dataset starts with a base set and is iteratively increased based on the model resolution matrix (R ) until the required number of data points is achieved. Among four different optimization methods, the compare R (CR) method of the best resolution is applied to directly calculate R for each new array added to the optimized dataset. Small optimized datasets generated by this technique are only <5% of their comprehensive sets but of an average resolution ratio (R r) of >0.95 (i.e. almost the same resolution). With increasing the size of the optimized dataset (during its generation), the algorithm progressively enhances R r values in the central interwell region (of low sensitivities and low resolution) far higher than in the near borehole region (of high sensitivities). Also the inverted tomogram reliability increases by increasing the optimized data size. Briefly, the optimized arrays improve the resolution in the interwell region which is commonly low in borehole–borehole ERT studies. The inverted output model is evaluated quantitatively using the model difference relative to the input model. The results reflect the common smearing effects and artefacts of varying degrees that overpredict volumes, underpredict magnitudes and blur boundaries of the target anomalies. This input model is a synthetic resistivity model that was used to generate synthetic (forward solution) data used during the inversion. Applications on synthetic CO2 models show that the mapping resolution for optimized datasets is better than that for other highly resolving arrays of the same number of data points. Problems of smeared boundaries and thin layers are less visible in the optimized array than in the other highly resolving arrays.  相似文献   

13.
Tumuli are artificially erected small hills that cover monumental tombs or graves. In this work, the surface three-dimensional (3D) Electrical Resistivity Tomography (ERT) method, composed of dense parallel two-dimensional (2D) tomographies, was used to investigate the properties of the tumuli filling material and to resolve buried archaeological structures inside the tumuli.The effectiveness of the method was investigated by numerical modeling and through 3D inversion of synthetic apparent resistivity data. A resistivity model that simulates the inhomogeneous tumulus material and the tombs that are buried inside the tumulus was assumed. The Dipole–Dipole (DD), Pole–Dipole (PD), Pole–Pole (PP), Gradient (GRAD), Midpoint-Potential-Referred (MPR) and Schlumberger Reciprocal (SCR) arrays, which are suitable for multichannel resistivity instruments, were tested. The tumulus topography (pyramid or capsized cup) was incorporated into the inversion procedure through a distorted finite element mesh. The inversion procedure was based on a smoothness constrained Gauss–Newton algorithm in which the Active Constraint Balancing (ACB) method was also applied in order to enhance the least-squares resolving power and stability.Synthetic modeling showed that the different tumulus layers and the horizontal contact of the artificial tumulus material with the natural background soil were reconstructed by all of the tested electrode arrays. Generally, PD and the GRAD arrays comprise the optimum choices to investigate the subsurface properties of a tumulus and locate buried tombs. The MPR model was inferior to the GRAD model, while the DD, PP and SCR models had the poorest resolution. It was also shown that the inversion models are practically independent from the survey direction and the topography shape of the tumulus.The real field data collected employing the PD array along a small tumulus from the archaeological site of Vergina in northern Greece enhanced the synthetic modeling results. The inversion model outlined a number of archaeological structures that exhibit a high possibility to correlate with graves. Overall, this work signifies that the surface 3D ERT method can provide a valuable tool in the non-destructive archaeological exploration of tumuli.  相似文献   

14.
Within the framework of the National Marine Geological and Geophysical Program, we re‐examined deep vertical electrical sounding (VES) data. The data, measured in 1968 by the General Directorate of Mineral Research and Exploration (MTA) of Turkey with the aim of exploring the deep resistivity structure of the Dikili–Bergama region, focus on the geothermal potential. The geoelectrical resistivity survey was conducted using a Schlumberger array with a maximum electrode half‐spacing of 4.5 km. The two‐dimensional (2D) inversion was utilized to interpret the VES data that were collected along 15‐ to 30‐km profiles. The 2D resistivity–depth cross‐sections obtained show very low resistivity values near the Dikili and Kaynarca hot springs. The 2D inversion results also indicate the presence of fault zones striking nearly N–S and E–W, and fault‐bounded graben‐horst structures that show promising potential for geothermal field resources. The 2D gravity model, which is in good agreement with the density variation of the region, supports the resistivity structure revealed by 2D inversion. The lithology information obtained from the borehole near Kaynarca also confirms the results of the resistivity interpretation and the density model.  相似文献   

15.
Z‐axis tipper electromagnetic and broadband magnetotelluric data were used to determine three‐dimensional electrical resistivity models of the Morrison porphyry Cu–Au–Mo deposit in British Columbia. Z‐axis tipper electromagnetic data are collected with a helicopter, thus allowing rapid surveys with uniform spatial sampling. Ground‐based magnetotelluric surveys can achieve a greater exploration depth than Z‐axis tipper electromagnetic surveys, but data collection is slower and can be limited by difficult terrain. The airborne Z‐axis tipper electromagnetic tipper data and the ground magnetotelluric tipper data show good agreement at the Morrison deposit despite differences in the data collection method, spatial sampling, and collection date. Resistivity models derived from individual inversions of the Z‐axis tipper electromagnetic tipper data and magnetotelluric impedance data contain some similar features, but the Z‐axis tipper electromagnetic model appears to lack resolution below a depth of 1 km, and the magnetotelluric model suffers from non‐uniform and relatively sparse spatial sampling. The joint Z‐axis tipper electromagnetic inversion solves these issues by combining the dense spatial sampling of the airborne Z‐axis tipper electromagnetic technique and the deeper penetration of the lower frequency magnetotelluric data. The resulting joint resistivity model correlates well with the known geology and distribution of alteration at the Morrison deposit. Higher resistivity is associated with the potassic alteration zone and volcanic country rocks, whereas areas of lower resistivity agree with known faults and sedimentary units. The pyrite halo and ≥0.3% Cu zone have the moderate resistivity that is expected of disseminated sulphides. The joint Z‐axis tipper electromagnetic inversion provides an improved resistivity model by enhancing the lateral and depth resolution of resistivity features compared with the individual Z‐axis tipper electromagnetic and magnetotelluric inversions. This case study shows that a joint Z‐axis tipper electromagnetic–magnetotelluric approach effectively images the interpreted mineralised zone at the Morrison deposit and could be beneficial in exploration for disseminated sulphides at other porphyry deposits.  相似文献   

16.
In the traditional inversion of the Rayleigh dispersion curve, layer thickness, which is the second most sensitive parameter of modelling the Rayleigh dispersion curve, is usually assumed as correct and is used as fixed a priori information. Because the knowledge of the layer thickness is typically not precise, the use of such a priori information may result in the traditional Rayleigh dispersion curve inversions getting trapped in some local minima and may show results that are far from the real solution. In this study, we try to avoid this issue by using a joint inversion of the Rayleigh dispersion curve data with vertical electric sounding data, where we use the common‐layer thickness to couple the two methods. The key idea of the proposed joint inversion scheme is to combine methods in one joint Jacobian matrix and to invert for layer S‐wave velocity, resistivity, and layer thickness as an additional parameter, in contrast with a traditional Rayleigh dispersion curve inversion. The proposed joint inversion approach is tested with noise‐free and Gaussian noise data on six characteristic, synthetic sub‐surface models: a model with a typical dispersion; a low‐velocity, half‐space model; a model with particularly stiff and soft layers, respectively; and a model reproduced from the stiff and soft layers for different layer‐resistivity propagation. In the joint inversion process, the non‐linear damped least squares method is used together with the singular value decomposition approach to find a proper damping value for each iteration. The proposed joint inversion scheme tests many damping values, and it chooses the one that best approximates the observed data in the current iteration. The quality of the joint inversion is checked with the relative distance measure. In addition, a sensitivity analysis is performed for the typical dispersive sub‐surface model to illustrate the benefits of the proposed joint scheme. The results of synthetic models revealed that the combination of the Rayleigh dispersion curve and vertical electric sounding methods in a joint scheme allows to provide reliable sub‐surface models even in complex and challenging situations and without using any a priori information.  相似文献   

17.
Electrical resistivity mapping and electrical resistivity profiling are powerful instruments for investigating archaeological structures. Interpretation of geoelectrical data is complicated by near-surface anomalies and the characteristics of the applied electrode arrays. Averaging Wenner α and Wenner β data as an alternative method of focused imaging is presented to overcome these problems. The mechanism of focused imaging is explained using the sensitivity distribution of the combined arrays. Various methods of imaging geoelectrical data are examined with synthetic and field data. In electrical resistivity mapping, inversion of the data is unnecessary when using focused imaging. In electrical resistivity profiling, focused imaging gives a first idea about the subsurface resistivity distribution without achieving the quality obtainable by inversion.  相似文献   

18.
We present a low‐cost, reliable method for long‐term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with an electrode spacing of 5 cm. Once installed, these were wired to the CR‐1000 Campbell Scientific Inc. datalogger at the surface to electrically image infiltration fronts in the shallow subsurface. This system was constructed and installed in June 2005 to collect apparent resistivity and temperature data from 96 subsurface electrodes set to a pole‐pole resistivity array pattern and 14 thermistors at regular intervals of 30 cm through May of 2008. From these data, a temperature and resistivity relationship was determined within the vadose zone (to a depth of ~1 m) and within the saturated zone (at depths between 1 and 2 m). The high vertical resolution of the data with resistivity measurements on a scale of 5‐cm spacing coupled with surface precipitation measurements taken at 3‐min intervals for a period of roughly 3 years allowed unique observations of infiltration related to seasonal changes. Both the vertical resistivity instrument probes and the data logger system functioned well for the duration of the test period and demonstrated the capability of this low‐cost monitoring system.  相似文献   

19.
Magnetic resonance sounding (MRS) has increasingly become an important method in hydrogeophysics because it allows for estimations of essential hydraulic properties such as porosity and hydraulic conductivity. A resistivity model is required for magnetic resonance sounding modelling and inversion. Therefore, joint interpretation or inversion is favourable to reduce the ambiguities that arise in separate magnetic resonance sounding and vertical electrical sounding (VES) inversions. A new method is suggested for the joint inversion of magnetic resonance sounding and vertical electrical sounding data. A one‐dimensional blocky model with varying layer thicknesses is used for the subsurface discretization. Instead of conventional derivative‐based inversion schemes that are strongly dependent on initial models, a global multi‐objective optimization scheme (a genetic algorithm [GA] in this case) is preferred to examine a set of possible solutions in a predefined search space. Multi‐objective joint optimization avoids the domination of one objective over the other without applying a weighting scheme. The outcome is a group of non‐dominated optimal solutions referred to as the Pareto‐optimal set. Tests conducted using synthetic data show that the multi‐objective joint optimization approximates the joint model parameters within the experimental error level and illustrates the range of trade‐off solutions, which is useful for understanding the consistency and conflicts between two models and objectives. Overall, the Levenberg‐Marquardt inversion of field data measured during a survey on a North Sea island presents similar solutions. However, the multi‐objective genetic algorithm method presents an efficient method for exploring the search space by producing a set of non‐dominated solutions. Borehole data were used to provide a verification of the inversion outcomes and indicate that the suggested genetic algorithm method is complementary for derivative‐based inversions.  相似文献   

20.
马欢  郭越  吴萍萍  谭捍东 《地球物理学报》2018,61(12):5052-5065
由于地表电阻率法受到浅地表局部异常体的干扰,反演精度受到影响,井中装置数据资料参与反演虽然可以减小浅地表局部异常体的干扰,但是由于钻井位置的局限性,数据量得不到保障,也会导致反演精度降低.为此,本文开发了一套结合地表、地-井、井-地和井-井装置数据的三维联合反演算法.首先,利用有限差分法实现正演模拟,采用非线性共轭梯度法(NLCG)恢复电阻率结构;其次,调用Message Passing Interface(MPI)函数库加速正演模拟和灵敏度矩阵运算,当开辟12个进程时,反演程序获得最大加速比4.51;最后,通过合成数据和实测数据算例证明该反演算法的有效性,也证实了多种装置组合数据体反演结果明显优于单一地表装置数据体反演结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号