首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Soil erosion is a particularly important problem in the loess areas of Central Europe. Numerous studies of past and present soil erosion based on colluvial sediments have so far been conducted. The main problem is the fact that colluvia usually do not represent the complete sedimentation record. Closed depressions (CDs) collect all colluvial sediments from their catchment, therefore, constitute sediment stores enabling the calculation of soil erosion rates. Colluvial sediments and fossil soils, infilling four CDs in the Polish loess belt, were OSL and C‐14 dated. Human settlements near the studied CDs were analyzed. Phases of soil erosion and colluviation from the Neolithic (5400–2900 bc ), from the Middle Bronze Age to the Early Iron Age (1600–0 bc ), and from the Early Middle Ages to Modern Times (500 AD until today) were documented within the CDs studied. Phases of low soil erosion rate and pedogenesis occurred from the Late Vistulian to the Early Neolithic and from the Iron Age to Early Middle Ages. This study reveals that these phases are not synchronous with the soil erosion phases in Central Europe, as the latter mainly occurred in the Bronze Age, Roman Period and Middle Ages. The obtained soil erosion rates were compared with erosion rates in different areas of Central Europe. This study indicates that in loess regions with long‐term agricultural land use, mean erosion rates (i.e. 3.7–5.9 t ha‐1 yr‐1) from the Middle Ages to Modern Times were ten times higher than during the entire prehistoric period (0.39–0.67 t ha‐1 yr‐1). The mean soil erosion rates for forested CDs was 0.24–0.74 t ha‐1 yr‐1. Soil erosion phases are most probably caused by human activities (i.e. land use change) but the early Holocene erosion phase (7.96 +/‐ 0.67 kyr) could have been induced by a climatic fluctuation (e.g. a 8.2 kyr Bond event). Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Dating of soil layers in a young floodplain using iron oxide crystallinity   总被引:1,自引:0,他引:1  
Dating of fluvial deposits is essential for a more quantitative understanding of landscape evolution and soil development in floodplain environments. We collected soil layers in defined depth intervals down to 60 cm along a substrate age gradient in a floodplain of the Danube River near Vienna, Austria. Depth profiles of fallout 137Cs were used to assess short-term sedimentation, and optically stimulated luminescence (OSL) dating was used to attribute sediment deposits to time periods between the early last millennium BC and the 18th century AD. In the studied soils, the ratio of oxalate- to dithionite-extractable iron (Feo/Fed), which indicates the degree of iron oxide crystallinity, progressively decreased from ratios greater than 0.5 to values less than 0.2 with increasing soil age and proved to be a reliable indicator of soil maturity. We linked the observed Feo/Fed ratios to the radiometric and OSL ages in a chronofunction, which allows to approximately date soil layers that lack an independent age control. The soil ages calculated with this chronofunction accurately reflected their geomorphological position, resulted in consistent age trends with depth, and highlighted the active morphodynamics of the studied floodplain. The chronofunction was further validated by dating a soil profile near the studied chronosequence that contained an archaeological find dated to the La Tène period (5th to 1st century BC).  相似文献   

3.
三峡库区蓄水运行前后水土流失时空变化模拟及分析   总被引:3,自引:0,他引:3  
利用三峡库区水土流失预测模型和250m的MODIS-NDVI数据,模拟三峡库区蓄水运行前后水土流失时空变化,结果表明:三峡库区2000-2008年水土流失波动较大,总体上水土流失面积、总量和强度都旱减弱趋势,2006-2008年年均水土流失总量和面积分别比2000-2002年减少4.10×106t和1129.6km2;...  相似文献   

4.
Gullies have been a common phenomenon in semi‐arid northern Ethiopia for the last centuries. However, soil and water conservation (SWC) structures have been implemented for a long time to curb soil erosion. Though, like most of the affected areas worldwide, density and distribution of gullies and SWC structures, their causes and interrelations are poorly understood. The aims of this study were to develop a technique for mapping these densities of gullies and SWC structures, to explain their spatial distribution and to analyze changes over the period 1935–2014. Aerial photographs from 1935 to 1936 and Google Earth images from 2014 of the 5142 km2 Geba catchment were used. Transect lines were established to count gullies and SWC structures in order to calculate densities. On average, a gully density of 1.14 km km?2 was measured in 1935–1936 of which the larger portion (75%) were vegetated, indicating they were not very active. Over 80 years, gully density has significantly increased to 1.59 km km?2 with less vegetation growing in their channel, but 66% of these gullies were treated with check dams. There was c. 3 km km?2 of indigenous SWC structures (daget or lynchets) in 1935–1936 whereas a high density (20 km km?2) of introduced SWC structures (mainly stone bunds and terraces) were observed in 2014. The density of gullies is positively correlated with slope gradient and shrubland cover and negatively with cropland cover, whereas the density of SWC structures significantly increased with increasing cropland cover. Density maps of gullies and SWC structures indicate sensitive areas to gully formation and priority areas for the implementation of SWC structures in Geba catchment. The obtained results illustrate the feasibility of the methods applied to map the density of gullies and SWC structures in mountainous areas. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Many studies have defined the interrelationships between climate, forest disturbance, and runoff at small scales (<100 km2), but few have translated these relationships to large watersheds (>500 km2). In this study, we explore the relationship between climate, extreme forest fire seasons, mountain pine beetle (MPB) outbreaks, and runoff in eight large watersheds within the Fraser and Peace drainage basins in British Columbia (BC), Canada from 1981–2019. Using a climate index based on precipitation and air temperature anomalies, we find extreme forest fire seasons (those that burned >5% of a watershed's area) are most likely to occur when a warm/dry summer is preceded by multiple seasons of cool/wet conditions. Using the climate suitability class (CSC) model to explore the relationship between climate and MPB outbreaks, we validate previous findings that lower-than-average precipitation, warm growing season temperatures, and lack of extremely cold temperatures during winter are connected to MPB outbreaks within central BC. However, the CSC model needs improvements to accurately assess MPB suitability in northern watersheds that are located outside the model's calibration region, either through weighted variables or lower degree day thresholds. Minimal runoff response occurs from these forest disturbances, with the most prominent runoff change being related to the 2014 fire season in the Osilinka and Mesilinka watersheds. The limited effects of forest disturbance on annual runoff are likely related to large watershed sizes, low percentages of disturbed area in some study watersheds and post-MPB forest dynamics. These results provide valuable insight into the interrelationships of climate, forest disturbance and runoff in large Canadian boreal forested watersheds.  相似文献   

6.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

9.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

11.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
This study demonstrates the spatial variation in hydrologic processes across the Upper Mississippi River Basin (UMRB) by the end of 21st century, by ingesting FOREcasting Scenarios (FORE‐SCE) of Land‐use Change projections into a physics‐based hydrologic model—Soil and Water Assessment Tool. The model is created for UMRB (440,000 km2), using the National Landcover Database of year 2001 and climate data of 1991–2010. Considering 1991–2010 as the baseline reference period, FORE‐SCE projections of year 2091 under three scenarios (A1B, A2, and B1 from the Intergovernmental Panel on Climate Change) are separately assimilated into the calibrated model, whereas climate input is kept the same as in the baseline. Modeling results suggest an increase of 0.5% and 3.5% in the average annual streamflow at the basin outlet (Grafton, Illinois) during 2081–2100, respectively, for A1B and A2, whereas for B1, streamflow would decrease by 1.5%. Under the “worst case” A2 scenario, 6% and 133% increase, respectively, in agricultural and urban areas with 30% depletion of forest and grassland would result into 70% increase in surface runoff, 20% decrease in soil moisture, and 4% decrease in evapotranspiration in certain parts of the basin. Conversion of cropland, forest, or grassland to perennial hay/pasture areas would lower surface runoff by 25% especially in the central region, whereas persistent forest cover in the northern region would cause up to 7% increase in evapotranspiration. The ecosystem in the lower half of UMRB is likely to become adverse, as dictated by a composite water–energy balance indicator. Future land use change extents and resultant hydrologic responses are found significantly different under A2, A1B, and B1 scenarios, which resonates the need for multi‐scenario ensemble assessments towards characterizing a probable future. The spatial variation of hydrologic processes as shown here helps to identify potential “hot spots,” giving ways to adopt more effective policy alternatives at regional level.  相似文献   

13.
Similar to the loess in the Chinese Loess Plateau (CLP), the loess deposits in the Ili basin of Central Asia arid area play an important role in understanding the climate and environmental changes. However, in contrast to the intensively investigated loess deposits in the CLP, the Ili loess is still insufficiently known and poorly understood. The geochronology study of the Ili loess remains controversial. In order to examine the potential of optically stimulated luminescence (OSL) dating for the Ili loess, we carry out a combined luminescence and radiocarbon dating study on a 6.9 m loess section in the south margin of the Ili basin. Polymineral fine grains were investigated by post infrared (IR) OSL using a Multiple-Aliquot Regenerative-dose (MAR) protocol. Radiocarbon dating of organic carbon were carried in a 3 Megavolt (MV) multi-element Accelerator Mass Spectrometry (AMS). The results indicate that the OSL ages are in agreement with the observed stratigraphy in the field, which is well correlated with that of the CLP, but the AMS 14C ages are much younger than the OSL and assumed stratigraphical ages. Thus, the OSL dating technique may provide an absolute chronology in this loess section. Further methodological approaches and more samples analysis will lead to the improvement of this chronology for high-resolution paleoclimatic interpretation.  相似文献   

14.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   

15.
Abstract

Agricultural use and related water erosion may lead to significant changes in the sedimentological and hydrological characteristics of watersheds, and therefore negative consequences for rural development. This research aimed to put present-day soil erosion of the important Mejerda catchment into a historical context. The catchment of Wadi Mejerda in northern Tunisia has experienced soil erosion due to weather and human impacts for thousands of years. We used historical texts and results from archaeological research that go back to 1000 BC, as well as data collected during the last century. Soil erosion from different types of agricultural landscape management was analysed together with information on the soils' production potential, the hydrographic network and flood frequency. The results showed that water erosion has increased the hydrographic network by 65 km and increased the deltaic plain by as much as 15 km2/century. However, soil productivity has decreased significantly. Moreover, due to in channel sedimentation and river choking, the number of flooding occurrences has multiplied over the last century. Finally, it is shown that water erosion follows a specific cycle of degradation throughout the watershed. These findings should be considered for better water and soil management in the context of semi-arid areas.

Editor Z.W. Kundzewicz

Citation Jebari, S., Berndtsson, R., Lebdi, F., and Bahri, A., 2012. Historical aspects of soil erosion in the Mejerda catchment. Hydrological Sciences Journal, 57 (5), 901–912.  相似文献   

16.
A sequence of 25 bread-kiln floors was sampled for archaeomagnetic measurements in a bakehouse in the old town of Lübeck, Germany. Due to archaeological dating this kiln floor sequence has been built up presumably from the late 13 th to the 18 th century. The primary magnetisation component is carried by magnetite (maghemite) and is very stable. Small viscous magnetisation components could be removed easily. The preliminary results of characteristic remanent magnetisation for 23 of the kiln-floor layers show clearly the trend of the geomagnetic secular variation expected for that time interval. By comparison with French and British master curves, the kiln-floor sequence started around 1425 and lasted until 1775 AD. Presently, confidence circles are relatively large and need refineing by measuring more samples, which have already been collected. Together with 14 C dating that can be determined from the charcoals found in the lowest layers and thermoluminescence dating of the layers, we expect to obtain, for the first time, a secular variation curve for Northern Germany covering the time interval from 1400 to 1800 years AD.  相似文献   

17.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts.  相似文献   

18.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Chinese loess–palaeosol sequences are well known for their records of monsoonal climatic variations. However, the modern processes of dust accumulation and soil formation remain poorly understood. A high‐resolution investigation on modern soils, including the measurement of magnetic susceptibility, particle‐size distribution, total Fe, total organic carbon, CaCO3 content, and optical stimulated luminescence (OSL) dating was carried out on the Zhouyuan loess tableland in the southern Loess Plateau. The results indicate that modern cinnamon soils (luvisols) have developed on contemporarily accumulated aeolian dust during the Holocene. The aeolian loess accumulated during the Younger Dryas was identi?ed in the top part of the Malan Loess that underlay the modern soil by OSL dating and proxy climatic data. It indicates that the Malan Loess accumulated during the last glaciation (marine isotope stages 2–4) does not serve as the parent material for the modern soils. Pedogenesis of the soils started with the increased precipitation and soil moisture that have occurred on the loess tableland since the early Holocene. Precipitation‐driven pedogenesis and organic activities are responsible for the leaching of CaCO3, decomposition of mineral dust and the production of clay and ferromagnetic minerals. Drier intervals have interrupted soil formation several times, and therefore pro?les with multiple soils have been developed at many sites on the loess tableland. At places where soil erosion was relatively strong, either a single soil or welded soils are preserved in the Holocene pro?les. This does not necessarily mean, however, that modern soils over the plateau have been developed without interruption under a constantly warmer, moister climate. This is signi?cant for understanding the surface processes and climatic variation during the formation of the numerous palaeosols over the Loess Plateau in the Quaternary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Intensive forest management is one of the main land cover changes over the last century in Central Europe, resulting in forest monoculture. It has been proposed that these monoculture stands impact hydrological processes, water yield, water quality and ecosystem services. At the Lysina Critical Zone Observatory, a forest catchment in the western Czech Republic, a distributed physics-based hydrologic model, Penn State Integrated Hydrologic Model (PIHM), was used to simulate long-term hydrological change under different forest management practices, and to evaluate the comparative scenarios of the hydrological consequences of changing land cover. Stand-age-adjusted LAI (leaf area index) curves were generated from an empirical relationship to represent changes in seasonal tree growth. By consideration of age-adjusted LAI, the spatially-distributed model was able to successfully simulate the integrated hydrological response from snowmelt, recharge, evapotranspiration, groundwater levels, soil moisture and streamflow, as well as spatial patterns of each state and flux. Simulation scenarios of forest management (historical management, unmanaged, clear cutting to cropland) were compared. One of the critical findings of the study indicates that selective (patch) forest cutting results in a modest increase in runoff (water yield) as compared to the simulated unmanaged (no cutting) scenario over a 29-year period at Lysina, suggesting the model is sensitive to selective cutting practices. A simulation scenario of cropland or complete forest cutting leads to extreme increases in annual water yield and peak flow. The model sensitivity to forest management practices examined here suggests the utility of models and scenario development to future management strategies for assessing sustainable water resources and ecosystem services.
Editor D. Koutsoyiannis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号