首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of pseudo‐dynamic tests (PDTs) of a full‐scale 3‐story 3‐bay buckling‐restrained braced frame (BRBF) using concrete‐filled tube columns was tested in the Taiwan National Center for Research on Earthquake Engineering using networked PDT techniques in October 2003. During the tests, real‐time experimental responses and video were webcasted to Internet viewers. The input ground motions adopted for the PDTs were chosen from the 1999 Chi‐Chi and the 1989 Loma Prieta earthquakes and scaled to represent three seismic hazard levels. This paper is in two parts, focusing on the investigations of the overall structure and the local members. This paper constitutes Part I and discusses the design, analytical investigations, and key experimental results of the specimen frame, such as the buckling of the brace‐to‐gusset joints. Part II of the paper, the companion paper, describes the gusset stiffening schemes and detailed experimental behavior of the BRBs and their connections. Experimental peak inter‐story drifts of 0.019 and 0.023 radians, prescribed for the design basis and the maximum credible earthquakes, respectively, are within the target design limits of 0.020 and 0.025 radians. These tests confirmed that the PISA3D and OpenSees nonlinear structural analysis computer programs can simulate the experimental peak shears and floor displacements well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper develops new techniques for integrating a number of different structural laboratories together through the Internet in order to jointly conduct a single structural experiment. A computer‐networking platform, called Platform for Networked Structural Experiments (PNSE), was developed to achieve this goal. PNSE runs directly on top of the Transmission Control Protocol/Internet Protocol (TCP/IP). It is a multi‐client system consisting of a number of client programs, which include one command generation program and a number of facility control programs, connected to a server program via TCP point‐to‐point connections across the Internet. An associated application protocol, called Networked Structural Experiment Protocol (NSEP), was developed to work with the PNSE. In addition to communication rules, the NSEP defines general experimental information, significant laboratory events, commands and signals, as well as obligated behaviours of all PNSE programs. Both domestic and transnational pseudo‐dynamic (PSD) tests were performed to verify the validity and efficiency of the PNSE. Test results showed that on the PNSE: signals were correctly transmitted; significant laboratory events were promptly reflected; and data transmission was remarkably efficient, with the round‐trip time (RTT) between Taiwan and the United States less than 0.1701 s. The characteristic of environment independency was also demonstrated through the successful collaboration of different facility control programs running on different operating systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
吉祥  李乐 《华南地震》2001,21(2):53-57
利用WindowsNT4.0及其所带的Internet Information Server和Active Service Page,结合SQLServer数据库,构筑动态Web信息系统已经是一项比较成熟的互连网技术。以宁夏地震局动态Web信息系统的建设为例,对上述技术方案中的一些基本概念、关键技术五一节等问题做了详细的阐述。  相似文献   

4.
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with an explicit numerical integration method for real‐time pseudo dynamic tests. The proposed method, termed the MPC‐SSP method, is suited to use in real‐time pseudo dynamic tests as no iteration steps are involved in each step of computation. A procedure for implementing the proposed method in real‐time pseudo dynamic tests is described in the paper. A state‐space approach is employed in this study to formulate the equations of motion of the system, which is advantageous in real‐time pseudo dynamic testing of structures with active control devices since most structural control problems are formulated in state space. A stability and accuracy analysis of the proposed method was performed based on linear elastic systems. Owing to an extrapolation scheme employed to predict the system's future response, the MPC‐SSP method is conditionally stable. To demonstrate the effectiveness of the MPC‐SSP method, a series of numerical simulations were performed and the performance of the MPC‐SSP method was compared with other pseudo dynamic testing methods including Explicit Newmark, Central Difference, Operator Splitting, and OS‐SSP methods based on both linear and non‐linear single‐degree‐of‐freedom systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This paper presents novel predictor–corrector time‐integration algorithms based on the Generalized‐α method to perform pseudo‐dynamic tests with substructuring. The implicit Generalized‐α algorithm was implemented in a predictor–one corrector form giving rise to the implicit IPC–ρ∞ method, able to avoid expensive iterative corrections in view of high‐speed applications. Moreover, the scheme embodies a secant stiffness formula that can closely approximate the actual stiffness of a structure. Also an explicit algorithm endowed with user‐controlled dissipation properties, the EPC–ρb method, was implemented. The resulting schemes were tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, using substructuring. The tests indicated that the numerical strategies enhance the fidelity of the pseudo‐dynamic test results even in an environment characterized by considerable experimental errors. Moreover, the schemes were tested numerically on severe non‐linear substructured multiple‐degrees‐of‐freedom systems reproduced with the Bouc–Wen model, showing the reliability of the seismic tests under these conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Batch kinetic studies were carried out for the removal of safranin from aqueous solution using a biomatrix prepared from rice husk. The adsorption kinetic data were modeled using the pseudo‐first‐order and pseudo‐second‐order kinetic equations. The linear and non‐linear forms of these two widely used kinetic models were compared in this study. In order to determine the best‐fitting equation, the coefficient of determination (r2), the sum of the squares of the errors (SSE), sum of the absolute errors (SAE), average relative error (ARE), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), and the Chi‐squared test (χ2) were used as error analysis methods. Results showed that the non‐linear forms of pseudo‐first‐order and pseudo‐second‐order models were more suitable than the linear forms for fitting the experimental data. Non‐linear method is thus more appropriate for estimating the kinetic parameters and should primarily be used to describe adsorption kinetics.  相似文献   

11.
Inspired from the simplified single degree of freedom modeling approach used in the preliminary design of concrete gravity dams, a pseudo‐dynamic testing method was devised for the seismic testing of a concrete gravity dam section. The test specimen was a 1/75 scaled section of the 120‐m‐high monolith of the Melen Dam, one of the highest concrete gravity dams to be built in Turkey. The single degree of freedom idealization of the dam section was validated in the first stage of the study using numerical simulations including the dam–reservoir interaction. Afterwards, pseudo‐dynamic testing was conducted on the specimen using three ground motions corresponding to different hazard levels. Lateral displacement and base shear demands were measured. The crack propagation at the base of the dam was monitored with the measurement of the crack widths and the base sliding displacements. After the pseudo‐dynamic loading, a static pushover test was conducted to determine the reserve capacity of the test specimen. Despite major cracking at the base of the monolith, neither significant sliding nor a stability problem that might jeopardize the stability of the dam was observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
地震目录数据动态可视化处理服务系统   总被引:1,自引:0,他引:1  
李圣强  李闽峰  王斌 《地震》2004,24(3):95-100
为数据共享项目研制和构建了一个具有一定实用价值的动态地震数据处理及可视化服务的系统, 并简要介绍了该系统的网络编程模式选取, 且选择ISAPI模式作为实现服务平台的编程模式。 详细分析了Internet动态服务平台的设计及实现, 包括服务平台编程语言的选取、 系统的运行环境、 后台的数据库支撑及技术流程等。 通过SQL Server数据库存放和管理用于动态可视化服务的地震目录数据和地震序列目录数据。 在数据库中共存放中国强震目录4227条和中国小震目录188033条以及7个地震序列目录共计50072条。 最后, 着重介绍了该服务系统的主要功能, 包括地震目录服务功能和地震序列分析处理功能。  相似文献   

13.
Elastic imaging from ocean bottom cable (OBC) data can be challenging because it requires the prior estimation of both compressional‐wave (P‐wave) and shear‐wave (S‐wave) velocity fields. Seismic interferometry is an attractive technique for processing OBC data because it performs model‐independent redatuming; retrieving ‘pseudo‐sources’ at positions of the receivers. The purpose of this study is to investigate multicomponent applications of interferometry for processing OBC data. This translates into using interferometry to retrieve pseudo‐source data on the sea‐bed not only for multiple suppression but for obtaining P‐, converted P to S‐wave (PS‐wave) and possibly pure mode S‐waves. We discuss scattering‐based, elastic interferometry with synthetic and field OBC datasets. Conventional and scattering‐based interferometry integrands computed from a synthetic are compared to show that the latter yields little anti‐causal response. A four‐component (4C) pseudo‐source response retrieves pure‐mode S‐reflections as well at P‐ and PS‐reflections. Pseudo‐source responses observed in OBC data are related to P‐wave conversions at the seabed rather than to true horizontal or vertical point forces. From a Gulf of Mexico OBC data set, diagonal components from a nine‐component pseudo‐source response demonstrate that the P‐wave to S‐wave velocity ratio (VP/VS) at the sea‐bed is an important factor in the conversion of P to S for obtaining the pure‐mode S‐wave reflections.  相似文献   

14.
A new Internet online hybrid test system, designated the ‘peer‐to‐peer (P2P) Internet online hybrid test system’, is proposed. In the system, the simulated structure is divided into multiple substructures, and each substructure is analysed numerically or tested physically in parallel at geographically distributed locations. The equations of motion are not formulated for the entire structure but for each substructure separately. Substructures are treated as highly independent systems, and only standard I/O, i.e. displacements and forces at the boundaries, are used as interfaces. A ‘Coordinator’ equipped with an iterative algorithm based on quasi‐Newton iterations is developed to achieve compatibility and equilibrium at boundaries. A test procedure, featuring two rounds of quasi‐Newton iterations and using assumed elastic stiffness, is adopted to avoid iteration for the substructure being tested physically. A fast and stable solution using a socket mechanism is developed for data exchange over the Internet. Demonstration tests applied to a base‐isolated structure was conducted, and the results are compared with an online hybrid test using the conventional test method. The results obtained from the P2P Internet hybrid test match very closely those obtained from the conventional tests. Investigations are also carried out on time consumption and control accuracy. The results show that the Internet data exchange solution using the socket mechanism is fast, and tests were completed successfully under the constructed Internet online hybrid test environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Magneto‐rheological (MR) dampers are a promising device for seismic hazard mitigation because their damping characteristics can be varied adaptively using an appropriate control law. During the last few decades researchers have investigated the behavior of MR dampers and semi‐active control laws associated with these types of dampers for earthquake hazard mitigation. A majority of this research has involved small‐scale MR dampers. To investigate the dynamic behavior of a large‐scale MR damper, characterization tests were conducted at the Lehigh Network for Earthquake Engineering Simulation equipment site on large‐scale MR dampers. A new MR damper model, called the Maxwell Nonlinear Slider (MNS) model, is developed based on the characterization tests and is reported in this paper. The MNS model can independently describe the pre‐yield and post‐yield behavior of an MR damper, which makes it easy to identify the model parameters. The MNS model utilizes Hershel–Bulkley visco‐plasticity to describe the post‐yield non‐Newtonian fluid behavior, that is, shear thinning and thickening behavior, of the MR fluid that occurs in the dampers. The predicted response of a large‐scale damper from the MNS model along with that from existing Bouc–Wen and hyperbolic tangent models, are compared with measured response from various experiments. The comparisons show that the MNS model achieves better accuracy than the existing models in predicting damper response under cyclic loading. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Partial‐strength composite steel–concrete moment‐resisting (MR) frame structures represent an open research field in seismic design from both a theoretical and an experimental standpoint. Among experimental techniques, vibration testing is a well‐known and powerful technique for damage detection, localization and quantification, where actual modal parameters of a structure at different states can be determined from test data by using system identification methods. However, the identification of semi‐rigid connections in framed structures is limited, and hence this paper focuses on a series of vibration experiments that were carried out on a realistic MR frame structure, following the application of pseudo‐dynamic and quasi‐static cyclic loadings at the European laboratory for structural assessment of the Joint Research Centre at Ispra, Italy, with the scope of understanding the structural behaviour and identifying changes in the dynamic response. From the forced vibration response, natural frequencies, damping ratios, modal displacements and rotations were extracted using the circle fitting technique. These modal parameters were used for local and global damage identification by updating a 3D finite element model of the intact structure. The identified results were then correlated with observations performed on the structure to understand further the underlying damage mechanisms. Finally, the latin hypercube sampling technique, a variant of the Monte Carlo method, was employed in order to study the sensitivity of the updated parameters of the 3D model to noise on the modal inputs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A two‐story buckling‐restrained brace (BRB) frame was tested under bidirectional in‐plane and out‐of‐plane loading to evaluate the BRB stability and gusset plate design. The test comprised pseudo‐dynamic loadings using the 1999 Chi‐Chi earthquake scaled to the 50%, 10%, and 2% probability of exceedance in 50 years and a cyclic regime of increasing amplitudes of up to 3.0% story drift ratio (SDR). The specimen had a unique configuration where the beams were connected to the columns through shear tabs welded to the column flanges and bolted to the beam webs. Stable hysteretic behavior with only minor cracking at the gusset‐to‐column welds was observed under the pseudo‐dynamic tests, with maximum in‐plane and out‐of‐plane SDRs of 2.24% and 1.47% respectively. Stable behavior continued into the cyclic test where fracture of the gusset‐to‐column welds occurred in the first cycle to simultaneous bidirectional SDR of 3.0%. The observed BRB stability is consistent with a methodology developed for BRB frames under simultaneous in‐plane and out‐of‐plane drifts. The specimen behavior was studied using a finite element model. It was shown that gusset plates are subjected to a combination of BRB force and frame action demands, with the latter increasing the gusset‐to‐beam and gusset‐to‐column interface demands by an average of 69% and 83% respectively. Consistent with the test results, failure at the gusset‐to‐column interfaces is computed when frame action demands are included, thus confirming that not considering frame action demands may results in unconservative gusset plate designs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A damage detection algorithm of structural health monitoring systems for base‐isolated buildings is proposed. The algorithm consists of the multiple‐input multiple‐output subspace identification method and the complex modal analysis. The algorithm is applicable to linear and non‐linear systems. The story stiffness and damping as damage indices of a shear structure are identified by the algorithm. The algorithm is further tuned for base‐isolated buildings considering their unique dynamic characteristics by simplifying the systems to single‐degree‐of‐freedom systems. The isolation layer and the superstructure of a base‐isolated building are treated as separate substructures as they are distinctly different in their dynamic properties. The effectiveness of the algorithm is evaluated through the numerical analysis and experiment. Finally, the algorithm is applied to the existing 7‐story base‐isolated building that is equipped with an Internet‐based monitoring system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
There is growing pressure from regulators on operators to adhere to increasingly stricter regulations related to the environment and safety. Hence, operators are required to predict and contain risks related to hydrocarbon production and their infrastructure in order to maintain their licence to operate. A deeper understanding of production optimisation and production‐related risk requires strengthened knowledge of reservoir behaviour and overburden dynamics. To accomplish this, sufficient temporal and spatial resolution is required as well as an integration of various sources of measurements. At the same time, tremendous developments are taking place in sensors, networks, and data analysis technologies. Sensors and accompanying channels are getting smaller and cheaper, and yet they offer high fidelity. New ecosystems of ubiquitous wireless communications including Internet of Things nowadays allow anyone to affordably connect to the Internet at any time and anywhere. Recent advances in cloud storage and computing combined with data analytics allow fast and efficient solutions to handle considerable amounts of data. This paper is an effort to pave the way for exploiting these three fundamental advances to create Internet of Things‐based wireless networks of seismic sensors. To this aim, we propose to employ a recently developed Internet of Things‐based wireless technology, so‐called low‐power wide‐area networks, to exploit their long range, low power, and inherent compatibility to cloud storage and computing. We create a remotely operated minimum‐maintenance wireless solution for four major seismic applications of interest. By proposing appropriate network architecture and data coordination (aggregation and transmission) designs, we show that neither the low data rate nor the low duty cycle of low‐power wide‐area networks imposes fundamental issues in handling a considerable amount of data created by complex seismic scenarios as long as the application is delay tolerant. In order to confirm this claim, we cast our ideas into a practical large‐scale networking design for simultaneous seismic monitoring and interferometry and carry out an analysis on the data generation and transmission rates. Finally, we present some results from a small‐scale field test in which we have employed our Internet of Things‐based wireless nodes for real‐time seismic quality control over clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号