首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
J. Liu  J. G. Liou 《Island Arc》1995,4(4):334-346
Abstract Kyanite-anthophyllite schist preserves the first record of high pressure in the amphibolite-facies unit of the SW Dabie Mountains, whereas ultrahigh- and high-pressure (UHP and HP) metamorphism has been well documented by the occurrence of coesite, diamond and mafic eclogite in the SE Dabie Mountains. Textural evidence indicates that minerals of the kyanite-anthophyllite schist formed mainly in two stages: (i) garnet + kyanite + antho-phyllite + rutile formed at pressure in excess of 1.2 GPa at T < 650°C; (ii) cordierite±staurolite formed by reaction of anthophyllite + kyanite at P < 0.5 GPa, T∼530°C. Plagioclase and ilmenite replaced garnet and rutile respectively during decompression. In a still later stage, secondary biotite recrystallized, accompanied by sillimanite replacing kyanite, and spinel replacing staurolite. The P-T information suggests that the amphibolite unit in the SW Dabie Mountains is part of the Triassic collision belt between the Sino-Korean and Yangtze cratons. The P-T paths of the UHP eclogite in the eastern Dabie Mountains and the HP kyanite-anthophyllite schist in the SW Dabie Mountains show similar decompression and equivalent late stage Barrovian-style metamorphism. Emplacement of voluminous granitoid at middle crustal levels between 134–118 Ma contributed to the development of the Barrovian-type metamorphism in the Dabie Mountains.  相似文献   

2.
Precambrian basement rocks have been affected by Caledonian thermal metamorphism. Caledonian‐aged zircon grains from Precambrian basement rocks may have resulted from thermal metamorphism. However, Hercynian ages are rarely recorded. Zircon U–Pb Sensitive High Resolution Ion Microprobe (SHRIMP) dating reveals that zircon ages from the Huyan, Lingdou, and Pengkou granitic plutons can be divided into two groups: one group with ages of 398.9 ±5.3 Ma, 399 ±5 Ma, and 410.2 ±5.4 Ma; and a second group with ages of 354 ±11 Ma, 364.6 ±6.7 Ma, and 368 ±14 Ma. The group of zircon U–Pb ages dated at 410–400 Ma represent Caledonian magmatism, whereas the 368–354 Ma ages represent the age of deformation, which produced gneissosity. The three plutons share geochemical characteristics with S‐type granites and belong to the high‐K calc‐alkaline series of peraluminous rocks. They have (87Sr/86Sr)i ratios of 0.710 45–0.724 68 and εNd(t) values of ?7.33 to ?10.74, with two‐stage Nd model ages (TDM2) ranging from 1.84 Ga to 2.10 Ga. Magmatic zircon εHf(t) values range from ?3.79 to ?8.44, and have TDMC ages of 1.65–1.93 Ga. The data suggest that these granites formed by partial melting of Paleoproterozoic to Mesoproterozoic continental crust. A collision occurred between the Wuyi and Minyue microcontinents within the Cathaysia Block and formed S‐type granite in the southwest Fujian province. The ca 360 Ma zircon U–Pb ages can represent a newly recognized period of deformation which coincided with the formation of the unified Cathaysia Block.  相似文献   

3.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

4.
The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally dominated by quartz monzonite extending as a band in NW direction which is differently foliated, contains numerous dioritic enclaves and has been dated as 174 Ma. The Penghe superunit, widely distributed in the field, varies in composition but is dominated by quartz monzonitic and granitic rocks, which is massive in structure, has well developed with dioritic enclaves and is aged in 125-127 Ma. The Huangbai superunit is mainly composed of granitic composition which is massive in structure, rarely contains dioritic enclaves and is aged in 120-111 Ma. These three superunits of granitic intrusions can also be clearly distinguished in geochemistry. They have recorded an orogenic process of the Dabie Mountains from the end of regional metamorphism to the overprinting of the circum-Pacific tectonic regime.  相似文献   

5.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

6.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

7.
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.  相似文献   

8.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

9.
Gneisses within an Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Biotites from non-retrograded segments of the gneiss terrane record40Ar/39Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376–2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Biotites in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant40Ar/39Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257±27 Ma (northwest) to 1751±23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The “saddle-shaped” nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes.Biotites in portions of the gneiss terrane which were completely recrystallized during Grenville metamorphism are petrographically and texturally distinct. A representative of this phase records a40Ar/39Ar plateau age of 2674±28 Ma. This date is markedly inconsistent with regional constraints on the timing of Grenville metamorphism, and indicates the presence of extraneous argon components. Both the extraneous and radiogenic argon components must have been liberated in constant proportions during experimental heating because the argon isotopic data yield a well-defined40Ar/36Ar vs.39Ar/36Ar isochron corresponding to an age (2658±23 Ma) similar to that defined by the plateau portion of the spectrum.The40Ar/39Ar biotite dates suggest that the effects of Grenville metamorphism extent 15–20 km northward into the Superior Province. The limit of this overprint is approximately coincident with the northernmost development of Grenville age thrust faults in the Archean terrane. Therefore, it is proposed that the northern margin of the Grenville Province in southwestern Labrador should be located along the northernmost Grenville thrust fault because this represents both a structural and a thermal discontinuity.  相似文献   

10.
Samples of mylonite, ultramylonite and phyllonite were collected from 5 localities in the Anhui part of the Tan-Lu fault zone for40Ar/39Ar chronological studies. Among them 4 samples from 3 localities on the eastern margin of the Dabie orogenic belt yielded40Ar/39Ar plateau ages of 128 —132 Ma; and 2 samples from the western margin of the Zhangbalin uplift and eastern margin of the Bengbu uplift gave the same40Ar/39Ar plateau ages of 120 Ma. Isochron analyses and other lines of evidence suggest that the data are reliable. The data are interpreted as cooling ages of sinistral strike-slip deformation of the Tan-Lu fault zone. The younger ages from the north might be related to slower strike-slip rising. These results indicate that the large-scale left-lateral displacement in the Tan-Lu fault zone took place in the Early Cretaceous, rather than in Late Triassic (Indosinian) as proposed by some geologists. Therefore, this fault zone is an intracontinental wrench fault rather than a transform fault or suture line developed during formation of the Dabie orogenic belt.  相似文献   

11.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

12.
Foliated garnet-bearing granite, usually associated with high pressure and ultrahigh -pressure (UHP) metamophic rocks, is a particular rock-type extensively exposed in the Mesozoic Dabie-Sulu orogenic belt of China. This study focuses on deformation features and SHRIMP zircon dating of foliated garnet granite in a high-pressure metamorphic unit from Huwan, western Dabie Mountains in order to resolve discrepancies in current versions of its petrogenesis and structural evolution. SHRIMP dating reveals a zircon age of 762 ± 15 Ma (MSWD=1.7) for Huwan granites, representing the Middle to Late Neoproterozoic age of intrusion and crystallization. Field and microstructural studies show that the Huwan granite body underwent multiple-stage deformation. The deformation was manifested by an early stage of rootless folding and imposition of relict foliation (S1); an Indosinian main stage marked by imposition of north-dipping penetrative gneissosity (S2) and development of ductile shear zones under NNE-SSW directed compression; and a final Indosinian stage of southward thrusting of the Huwan high-pressure unit. Shallow level extension prevailed after the Late Triassic, giving rise to south-dipping thrust faults and north-dipping normal faults. Supported by the National Natural Science Foundation of China (Grant Nos. 40802046 and 40334037) and the Project of Science & Technology Research and Development from Sinopec (Grant No. P02009)  相似文献   

13.
Granitoid intrusives such as Saishitenshan, Tuanyushan, Aolaohe and Sanchagou occur widely in the western segment of North Qaidam. All these bodies trend NW, roughly parallel to the regional structure. Zircon SHRIMP dating for these granites show that they range in age from Ordovician to Permian; 465.4±3.5 Ma for Saishitenshan, 469.7±4.6 Ma and 443.5±3.6 Ma for Tuanyushan, 372.1±2.6 Ma for Aolaohe, and 271.2±1.5 Ma and 259.9±1.2 Ma for Sanchagou. Both the Tuanyshan and Aolaohe plutons record two distinct intrusive events. Geochemically, the early Paleozoic granites have an island arc or active continental margin affinity, and their protolith may have been Mesoproterozoic oceanic crust derived from depleted mantle. The protolith of the late Paleozoic granites may have been Mesoproterozoic lower crust from the root of an island arc with the magmas reflecting a mixture of mantle and crustal material.  相似文献   

14.
Previous studies of weathering generally started with geochemistry[1—8] and mineralogy[9—12], and have been focused on chemical weathering rates[1—3], removability-enrichment of elements[3—6] during chemical weathering, and the age of weathering profi…  相似文献   

15.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

16.
Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings,40Ar-39Ar datings of mica, K-feldspar and quartz, some Rb-Sr isochrons, and the SHRIMP zircon U-Pb dating and single grain zircon U-Pb dating, we suggest that the large-scale mineralization in North China craton and adjacent areas take place in three periods of 200-160Ma, 140Ma±, and 130-110Ma. Their corresponding geodynamic settings are proposed to be the collision orogenic process, transformation of the tectonic regime, and delamination of the lithosphere, respectively, in light of analyzing the Mesozoic geodynamic evolution in the North China craton.  相似文献   

17.
A dating of two biotite samples taken from the meso- and low-temperature mylonites within the Shangyi-Chicheng fault belt on the north of the North China Craton yields 40Ar/39Ar isotopic ages of (399 ± 1) Ma and (263 ± 2) Ma, respectively. These data reflect an Early Devonian deformation and a Late Carboniferous retrograde metamorphism event along the fault, suggesting that the tectonic activities of the North China Craton in Paleozoic should be reconsidered.  相似文献   

18.
Panzhihua-Xichang micro-palaeoland (Panxi ter-rane) is located on the western margin of the Yangtze Block. The western boundary of the Panxi mi-cro-palaeoland, and also the western boundary of the Yangtze Block, is the Jinhe-Jinghe fault, which defines the eastern boundary of the Songpan-Ganzi Fold Belt. The eastern boundary of this micro-palaeoland is the Ganluo fault. On the east side of the Ganluo fault is the Sichuan Basin in the Yangtze Block (fig. 1). Panxi micro-palaeoland is on…  相似文献   

19.
Neoproterozoic igneous and metamorphic complexes occur as tectonic domes in the Longmen Mountains of the western margin of the Yangtze Block, and are important in reconstructing the Rodinian supercontinent and constraining the timing and mechanism of tectonic denudational processes. The Pengguan dome consists of granitic intrusions and metamorphic rocks of the Huangshuihe Group and is tectonically overlain by ductilly deformed Sinian to Paleozoic strata. The plutonic intrusions consist of granites with abundant amphibolite enclaves. New LA-ICP-MS zircon U-Pb dating yielded an emplacement age of 809±3 Ma and a protolith age of 844±6 Ma for the granite. The granitic rocks have geochemical signatures typical of A-type granites, indicating their formation under an extensional environment, by melting of newly formed tonalite-trondhjemite-granodiorite (TTG) rocks. A detachment fault, characterized by variable ductile shear deformation of S-C fabric and ESE-ward kinematics, separates the Pengguan dome from the Sinian-Paleozoic cover. 40Ar/39Ar dating of muscovite from the mylonite in the detachment fault of the dome demonstrates that ductile deformation occurred at ~160 Ma. This study indicates the existence of a Neoproterozoic magmatic arc-basin system, which was denudated by a Jurassic middle crustal ductile channel flow along the Longmenshan thrust belt.  相似文献   

20.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号