首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dredged spoil (DS) was used as a silt and clay additive in the construction of artificial tidal flats from mountain sand (MS). As the ratio of DS in the sediment media increased, the number of emerging macrobenthos increased. The composition of the macrobenthic community was also affected by the addition of DS, and the changes might be dependent on the ratio of DS to MS. In addition, the macrobenthos in the artificial tidal flats was more abundant than that in the control tidal flat, which was constructed with natural tidal flat sediment. With a silt and clay content of 25%, polychaetes Ceratonereis erythraeensis and Capitella sp. and the gastropod Batillaria cumingii were dominant, whereas no bivalves were present. With less silt and clay (5% and 10%), the bivalves Ruditapes philippinarum and Musculista senhousia were observed in the artificial flats, while their numbers in the control tidal flat were lower.  相似文献   

2.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

3.
《国际泥沙研究》2022,37(6):701-714
E. coli and Listeria monocytogenes (or L. monocytogenes) are bacteria affecting fresh produce that is harmful for health of humans and animals. If these bacteria are present in surface waterbody (e.g., irrigation canals), they will impair irrigation water quality and threaten produce safety. This paper studied the resuspension of E. coli and Listeria from bed sediment into irrigation water through several sets of laboratory experiments in an open channel flume. We studied three types of sediments using several flow rates in different velocities and shear stress. Bacteria's concentration in water increases with the bed shear stress. Two empirical relations were derived to correlate the concentration of E. coli and L. monocytogenes with the dimensionless bed shear stress. The experimental data favorably verified the relationships for sandy loam, loamy sand, and loam. The results showed that both bacteria could entrain from sand more efficiently compared to other sediments (i.e., sandy loam or loam). These relationships can be applied to water quality models for simulating E. coli and L. monocytogenes transport in irrigation canals for better managing irrigation water quality.  相似文献   

4.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

5.
Hydrodynamic, suspension and bed-form measurements were made 2 km off the Dutch coast near Noordwijk aan Zee in ∼14 m water depth for a period of 32 days in 2003. Tidal currents were just able to suspend sand at the bed at peak spring tide but most suspension and transport occurred as a result of the combination of waves and currents. Burst-average (17 min) sand concentration profiles (-profiles) from an acoustic backscatter instrument were used to define the (varying) location of the sea-bed, following the method used by Green et al. [Green, M.O., Dolphin, T.J., Swales, A., Vincent, C.E., 1999. Transport of mixed-size sediments in a tidal channel. Coastal Sediments ‘99, edited by N.C. Kraus, and W.G. McDougal, ASCE, Long Island, New York, pp. 644–658]. Reference concentrations at the sea-bed (C0) and at 1 cm (C1) were examined in relation to both the hydrodynamic conditions and the type of bed forms present. The C0 predictive equations of Green and Black [Green, M.O., Black, K.P., Suspended sediment reference concentration under waves: field measurements and critical analysis of two predictive models, Coastal Engineering, 38, 115–141, 1999](short-wave ripples) and Nielsen [Nielsen, P., Suspended sediment concentrations under waves, Coastal Engineering, 10, 23–31, 1986](all bed forms; includes ripple steepness), both of which require knowledge of the bed-form type, were not as successful in explaining the variance in our C0 data as a regression of C0 against the skin-friction Shields parameter θcw that ignored bed-form type (73% of variance explained). The values of the reference concentration C1 were compared with the Lee et al. [Lee, G.-H., Dade, W.B., Friedrichs, C.T., Vincent, C.E., Examination of Reference Concentration Under Waves and Currents on the Inner Shelf., Journal of Geophysical Research, 109, 1–10, 2004] equation which predicts C1 from the product of the Shields parameter and the inverse Rouse parameter; 51% of the variance in C1 was explained.  相似文献   

6.
Grain-size distributions of suspended load over a sand-gravel bed at two different flow velocities were studied in a laboratory flume.The experiments had been performed to study the influence of flow velocity and suspension height on grain-size distribution in suspension over a sand-gravel bed.The experimental findings show that with an increase of flow velocity,the grain-size distribution of suspended load changed from a skewed form to a bimodal one at higher suspension heights.This study focuses on the determination of the parameter β_n which is the ratio of the sediment diffusion coefficient to the momentum diffusion coefficient of n th grain-size.A new relationship has been proposed involving β_n,the normalizing settling velocity of sediment particles and suspension height,which is applicable for widest range of normalizing settling velocity available in literature so far.A similar parameter β for calculating total suspension concentration is also developed.The classical Rouse equation is modified with β_n and β and used to compute grain-size distribution and total concentration in suspension,respectively.The computed values have shown good agreement with the measured values of experimental data.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):544-551
Polychaetes are suitable organisms for evaluation of impact of sediment pollution. We evaluated toxicity of cadmium and copper and measured metallothionein-like proteins (MTLPs) in the polychaete Perinereis nuntia. At the same concentration ranges copper was unexpectedly more toxic than cadmium. Copper also caused no significant increase in MTLPs in the polychaetes. When P. nuntia and another polychaete species, Cirratulus cirratus were cultured in the contaminated sediments collected from Lake Sihwa (Korea), a high mortality of 80% was observed on day 6 in P. nuntia in the sediment with the highest metal concentration. However, no mortality was observed up to 35 days in C. cirratus in any sediment. MTLP contents between two species also varied. These findings suggest that MTLP induction response in the polychaetes varies with the metal type and species and it may be used as a biomarker of sediment pollution in the polychaetes after further validation and field trials.  相似文献   

8.
This paper presents results of recent measurements of sand transport made in Chioggia inlet as part of an extensive monitoring programme in the Venetian inlets. Measurements were made in order: (1) to define a relationship between sand transport magnitude and tidal flow; (2) to derive the thresholds for sand transport; (3) to identify the dominant modes of transport; (4) to evaluate the concentration profiles of sand within the benthic boundary layer; (5) to compare bedload transport observations with model predictions using existent bedload formulae; and (6) to produce yearly estimates of bedload transport across the inlet. The vertical distribution of sand in the water column was sampled using modified Helley–Smith bedload samplers at three sites. Transport was found to vary according to the flow and bed grain size, with considerable temporal and spatial variability. A difference of up to three orders of magnitude in transport was observed through the inlet, with higher transport rates measured on the seaward part. The dominant mode of transport in the central inlet was suspension, while bedload was dominant in the mouths. The measured profiles of sand concentration varied with the tidal stage and seabed grain size according to the Rouse parameter (R). R was high at the inlet mouths (1<R<2), indicative of a well-developed bedload layer. The inverse movability number (Ws/U*) was also higher at these sites and appeared to be grain size dependant. Formulae for bedload transport were tested against field data; stochastic methods such as Einstein–Brown, Engelund–Hansen and Van Rijn produce the best fits. The coupled model SHYFEM-Sedtrans05 appears to simulate well observed transport for most conditions of flow. Long-term bedload predictions indicate a dominant export of sand, with a yearly average of 4500 m3.  相似文献   

9.
The algae were cultivated in an outdoor cultivation unit in waste water from sewage treatment plant processing city sewage and largescale hoggery effluent. The cultivation area (2m2) had a slant of 3% and the suspension layer thickness was about 5 cm. The total suspension volume in the cultivation device was 150 I. Mass balance served us for derivation of formulas for the average rate of algal biomass production and for the extent of nutrient removal from waste water. Experiments showed a considerable effect of dilution rate on individual parameters in these formulas. The removal of nitrogen and phosphorus is optimal at a dilution rate of 0.3 day?1 whereas optimum biomass production lies at about 0.1 day?1. The nitrogen and phosphorus yield coefficient Y (g biomass/g element) are practically identical, both of them depending on dilution rate. The effect of the dilution rate on other characteristics of the effluent water has not yet been unambiguously proved. The results are shown of bacteriological and mycological examinations, in addition, of the chemical analysis of resulting algal biomass.  相似文献   

10.
The trophic structure of a community is used to infer ecosystem functioning(e.g. energy transfer and nutrient cycling). Here the trophic structure of the benthic infaunal and epifaunal communities in the Brunei Estuary are characterized, and their distribution along an estuarine pH gradient is analyzed using univariate and multivariate techniques. This analysis revealed that surface deposit feeders(e.g., polychaetes) were numerically dominant within the infaunal communities whereas in the epifaunal communities filter feeders(e.g., bivalves) were highly abundant. Species richness for almost all trophic groups increased toward the lower estuary, except for omnivores in the epifaunal communities, which decreased markedly. Both Analysis of Variance(ANOVA) and Analysis of Similarities(ANOSIM) detected significant differences in the density of respective trophic groups among stations. Within infaunal communities, both Biological and Environmental procedure(BIO-ENV) and Canonical Correspondence Analysis(CCA) showed that trophic shifts were associated with environmental gradients. Surface-deposit feeders and omnivores were the most abundant macrobenthos of the upper estuary characterized by low salinity, low pH, and a higher percentage of mud particles. The proportion of filter feeders and carnivores increased with salinity/pH and sand. A more uniform distribution of trophic structure was found in the lower estuary, with high salinity and pH over sandy habitat. In contrast, within epifaunal trophic groups,the percentage of surface deposit feeders and omnivores declined, but filter feeders remarkably increased toward the sea. The proportion of carnivores remained similar at all stations. Non-Metric Multidimensional Scaling(nMDS) ordination for epifaunal trophic groups clearly demarcated higher salinity/pH stations from lower salinity/pH stations, suggesting different trophic compositions along the estuarine pH gradient.  相似文献   

11.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
The relationship between turbulent fluid motions and sediment particle motions over mobile sand dunes was investigated by using a laser Doppler velocimeter and an acoustic backscatter system in laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory. Profiles of acoustic backscatter from particles and at-a-point turbulence data were collected while translating both measurement devices downstream at the speed of mobile dune bedforms. The resulting data set was used to examine the frequency (recurrence frequency) at which the fluctuating backscatter and fluid velocity signals exceeded magnitude thresholds based on the standard deviation (σ) of the local velocity and the magnitude the acoustic signal resulting from backscatter from suspended particles. The slope of the downstream and vertical velocity recurrence frequencies generally indicated a gradually increasing recurrence time with increasing elevation. The recurrence frequency for acoustic backscatter data was not strongly variable with elevation. The closest correspondence between the recurrence frequencies of sediment backscatter and vertical velocities at the 1σ magnitude threshold was in a region defined by X/L〈0.4 and y〈6 cm. The downstream velocity was most closely related to backscatter in a small region at 0.4〈X/L〈0.8 and less than 3-4 cm from the bed.  相似文献   

13.
The relation between grain-size distribution of the bed and in suspension was critically examined under a uniform flow velocity of 50 cm/s over two beds: one of mainly fine sands and the other of medium sands. Two sections – one 2.85 m downstream and the other 6.35 m downstream in the experimental channel-were selected for sampling to study the grain-sorting pattern in the vertical direction along the direction of transport. The shape and type of the grain-size distribution pattern were critically studied with height above the bed. The change in the distribution pattern has been attributed to the change of local bed roughness causing scouring against the protruded relatively coarse grains on the bed. Such trends are important to predict the nature of river bed topography. The sand of Bed-1 initially exhibits a log-skew-Laplace distribution at different heights of suspension. The distribution pattern, however, changes but this changing pattern is not consistent along the upstream side. For Bed-2, which initially exhibits a log-normal distribution, the same pattern persists from the height of suspension at 5 cm up to 20 cm. Such consistency in log-normality is also observed at the downstream points of measurement. It is generally expected that the mean grain-size would reduce with increases of suspension height but the results of the experiments, in some occasions, differ significantly from the gradual fining upward trend. This result has been attributed to local changes of bed roughness arising from the protruded relatively coarse grains causing eddies, scouring, and turbulent phenomena which moves coarse particles higher in suspension adding a coarse tail to the distribution increasing the mean grain-size.  相似文献   

14.
Capping with layers of inert or adsorptive materials is used to control the release of polycyclic aromatic hydrocarbons(PAH)in sediment but little is known about microbial degradation processes in these materials.A rich native microbial community inhabits the sediment bed,and capping media can influence enrichment and biodegradation activity of benthic microorganisms.The aim of this study was to evaluate the effects of capping media(sand,organoclay,and powdered activated carbon[PAC])on microbial communities under oxic conditions typical of the capewater interface,where naphthalene degradation(model PAH)is likely to be maximized.Bench scale experiments compared naphthalene concentrations,nahAc biomarker abundance,microbial community composition,and cellular attachment in systems amended with adsorptive and non-adsorptive capping materials.Results indicate that activated carbon promoted and enhanced bioactivity;PAC treatments showed high biodegradation rates,nahAc biomarker levels,and attached biological growth consistent with enrichment of the PAHdegrading genus Pseudomonae.In contrast,sand did not enhance biological activity compared to media-free systems.Naphthalene strongly influenced microbial community composition at the species level in all treatments except organoclay,which promoted biological signatures commonly associated with impeding degradation activity.Data overall suggest that adsorptive capping materials can both promote(PAC)and inhibit(organoclay)bioactivity in the surficial layer of caps,indicating that media selection is critical to the design of bioactive capping systems.  相似文献   

15.
Sandy shores on the West coast of the North Adriatic Sea are extensively protected by different types of defence structures to prevent coastal erosion. Coastal defence schemes modify the hydrodynamic regime, the sediment structure and composition thus affecting the benthic assemblages. This study examines the effectiveness in detecting changes in soft bottom assemblages caused by coastal defence structures by using different levels of taxonomic resolution, polychaetes and/or bivalves as surrogates and different data transformations. A synoptic analyses of three datasets of subtidal benthic macrofauna used in studies aimed at assessing the impact of breakwaters along the North Adriatic coast has been done. Analyses of similarities and correlations between distance matrices were done using matrices with different levels of taxonomic resolution, and with polychaetes or bivalves data alone. Lentidium mediterraneum was the most abundant species in all datasets. Its abundance was not consistently related to the presence of defence structures. Moreover, distribution patterns of L. mediterraneum were masking the structure of the whole macrofaunal assemblages. Removal of L. mediterraneum from the datasets allowed the detection of changes in benthic assemblages due to coastal defences. Analyses on different levels of taxonomic resolution showed that the level of family maintained sufficient information to detect the impacts of coastal defence structures on benthic assemblages. Moreover, the outcomes depended on the transformation used. Patterns of distribution of bivalves, used as surrogates, showed low correlations with the patterns of the total macrofaunal species assemblages. Patterns of polychaetes, if identified to the species or genus level showed higher correlations with the whole dataset. However, the identification of polychaetes to species and genus level is as costly as the identification of all macrobenthic taxa at family level.This study provided additional evidences that taxonomic sufficiency is a useful tool in environmental monitoring, also in investigations on the impacts of coastal defence structures on subtidal macrofauna. The use of coarser taxonomic level, being time-efficient, would allow improving sampling designs of monitoring programs by increasing replication in space and time and by allowing long term monitoring studies.  相似文献   

16.
Caddisfly (Trichoptera) larvae are an abundant and widespread aquatic insect group characterized by the construction of silk structures, including nets and cases. Case-building caddisfly have the potential to modify the sorting and mobility of sand and fine gravel via: (1) case construction, resulting in altered sediment properties; (2) transporting sediment incorporated into cases over the river bed; and (3) changing the structure of river beds via burrowing activity. To investigate these mechanisms, it is necessary to understand the mass, size distribution and spatial variability of sediment use by case-building caddisfly larvae. We quantified the mineral sediment used by individuals and communities of case-building caddisfly in 27 samples, from three sites on a gravel-bed stream. The mass and size distribution of sediment in individual cases varied between taxa (mass = 0.001–0.83 g, D50 = 0.17–4 mm). The mean mass of sediment used by the caddisfly community was 38 g m−2 and varied locally. Sediment use was predominantly coarse sand (D50 = 1 mm). 64% of sediment use was attributable to Agapetus fuscipes (Glossosomatidae). Due to within-species variability in case mass, the abundance of most taxa, including A. fuscipes, was only weakly associated with the mass of sediment used by this species, at the river scale. Whilst the caddisfly community used a small percentage of the total sediment available (average 2.99% of the 1–1.4 mm size fraction), A. fuscipes used more fine sediment in their cases at sites where it was more available. Despite variability in local habitat, all sites supported diverse case-building caddisfly communities utilizing mineral sediment. Consequently, geomorphological effects of case-building caddisfly are potentially widespread. The results provide novel insights into the specific grain sizes and quantities of fine sediment used by caddisfly larvae, which represents an important step towards understanding their zoogeomorphic activities. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

17.
Flocculation settling characteristics of mud: sand mixtures   总被引:2,自引:1,他引:1  
When natural muds become mixed with sandy sediments in estuaries, it has a direct effect on the flocculation process and resultant sediment transport regime. Much research has been completed on the erosion and consolidation of mud/sand mixtures, but very little is known quantitatively about how mixed sediments interact whilst in suspension, particularly in terms of flocculation. This paper presents the settling velocity findings from a recent laboratory study which examined the flocculation dynamics for three different mud/sand mixtures at different concentrations (0.2–5 g.l?1) and turbulent shear stresses (0.06–0.9 Pa) in a mini-annular flume. The low intrusive video-based Laboratory Spectral Flocculation Characteristics instrument was used to determine floc/aggregate properties (e.g., size, settling velocity, density and mass) for each population. Settling data was assessed in terms of macrofloc (>160 μm) and microfloc (<160 μm) settling parameters: Wsmacro and Wsmicro, respectively. For pure muds, the macroflocs are regarded as the most dominant contributors to the total depositional flux. The parameterised settling data indicates that by adding more sand to a mud/sand mixture, the fall velocity of the macrofloc fraction slows and the settling velocity of microflocs quickens. Generally, a mainly sandy suspension comprising 25% mud and 75% sand (25M:75S), will produce resultant Wsmacro which are slower than Wsmicro. The quickest Wsmicro appears to consistently occur at a higher level of turbulent shear stress (τ?~?0.6 Pa) than both the macrofloc and microfloc fractions from suspensions of pure natural muds. Flocculation within a more cohesively dominant muddy-sand suspension (i.e., 75M:25S) produced macroflocs which fell at similar speeds (±10%) to pure mud suspensions at both low (200 mg l?1) and intermediate (1 g?l?1) concentrations at all shear stress increments. Also, low sand content suspensions produced Wsmacro values that were faster than the Wsmicro rates. In summary, the experimental results of the macrofloc and microfloc settling velocities have demonstrated that flocculation is an extremely important factor with regards to the depositional behaviour of mud/sand mixtures, and these factors must be considered when modelling mixed sediment transport in the estuarine or marine environment.  相似文献   

18.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

20.
Eddy correlation techniques are standard tools in micrometeorology and oceanography to measure momentum and contaminant transport across turbulent boundary layers. They can, in theory, be used to estimate the net vertical suspended sediment flux directly over different areas of an alluvial channel boundary, and thus disclose ongoing erosion/deposition patterns. The basic principles and main problems in applying the technique to alluvial suspension are first introduced. Results from a trial application of the method in a large sand bed river are then presented; the focus of the analysis is on the substantial (and surprising) contributions of multi-minute flow fluctuations to suspension work in the study environment. The data were collected in a 10 m deep channel of the Fraser River near Mission, British Columbia, Canada. Turbulent fluctuations of flow components streamwise and normal to the bed, along with the output of an optical suspended sediment sensor, were monitored over 7 h, 1 m above the bed. Flow velocities averaged 0·9 ms?1 and mean suspended sediment concentrations 500 mgl?1, at sensor level above 1–5 dm high dunes. Spectral analysis of the records reveals that approximately 30 per cent of the vertical suspended sand mixing across the sensor level (and roughly as much of the momentum exchange) was linked to gradual flow oscillations with periods between 1 and 13·6 min (underlying briefer, turbulent fluctuations). Extended periods of sediment-rich, slightly upward directed but slower mean flow alternated with periods of sediment-poor, slightly downward and faster mean flow; these slow fluctuations involved 10–20 cms?1 changes in 5 min average flow speed, 2–4· changes in vertical flow angle and 100 mgl?1 changes in mean sand concentration. To obtain accurate eddy-correlation estimates of the vertical suspension flux in the study conditions, hour-scale flow and turbidity records that include many of these multi-minute cycles appear to be necessary. The spectra of the Fraser River near-bed signals do not conspicuously differ in overall shape (in terms of low-frequency content and location of peak) from turbulent spectra encountered in some atmospheric boundary layers. Nonetheless, the long period fluctuations observed on the Fraser River may not be turbulent; rather they may reflect slowly evolving perturbations in the near-bed streamlines, caused by bedform translation or gradual fluctuation within the large-scale streamwise cells of the secondary flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号