首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The orientations of ground motions are paramount when the pulse‐like motions and their unfavorable seismic responses are considered. This paper addresses the stochastic modeling and synthesizing of near‐fault impulsive ground motions with forward directivity effect taking the orientation of the strongest pulses into account. First, a statistical parametric analysis of velocity time histories in the orientation of the strongest pulse with a specified magnitude and various fault distances is performed. A new stochastic model is established consisting of a velocity pulse model with random parameters and a stochastic approach to synthesize high‐frequency velocity time history. The high‐frequency velocity history is achieved by integrating a stochastic high‐frequency accelerogram, which is generated via the modified K‐T spectrum of residual acceleration histories and then modulated by the specific envelope function. Next, the associated parameters of pulse model, envelope function, and power spectral density are estimated by the least‐square fitting. Some chosen parameters in the stochastic model of near‐fault motions based on correlation analysis are regarded as random variables, which are validated to follow the normal or lognormal distribution. Moreover, the number theoretical method is suggested to select efficiently representative points, for generating artificial near‐fault impulsive ground motions with the feature of the strongest pulse, which can be used to the seismic response and reliability analysis of critical structures conveniently. Finally, the simulated ground motions demonstrate that the synthetic ground motions generated by the proposed stochastic model can represent the impulsive characteristic of near‐fault ground motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
杨迪雄  赵岩 《地震学报》2010,32(5):579-587
选择台湾集集地震和美国北岭地震的近断层地震动记录作为输入,考察了近断层地震动破裂向前方向性与滑冲效应引起的两种不同速度脉冲运动对单自由度体系和长周期橡胶支座隔震建筑结构抗震性能的影响.反应谱分析表明,破裂向前方向性与滑冲效应对工程结构地震响应的影响是随结构周期变化的.在中短周期段,含破裂向前方向性效应地震动的谱加速度值大于含滑冲效应地震动的谱加速度值;而在长周期段,含滑冲效应地震动的谱加速度大于含破裂向前方向性效应的谱加速度值.并且,与无脉冲地震动作用相比,含破裂向前方向性与滑冲效应脉冲的近断层地震动作用下隔震建筑的地震响应显著增大.滑冲效应引起的速度脉冲使隔震建筑底部的层间变形和楼层剪力明显增大,这意味着滑冲效应脉冲比向前方向性效应脉冲对长周期建筑结构的破坏更具危害性.  相似文献   

4.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Near‐fault ground motions impose large demands on structures compared to ‘ordinary’ ground motions. Recordings suggest that near‐fault ground motions with ‘forward’ directivity are characterized by a large pulse, which is mostly orientated perpendicular to the fault. This study is intended to provide quantitative knowledge on important response characteristics of elastic and inelastic frame structures subjected to near‐fault ground motions. Generic frame models are used to represent MDOF structures. Near‐fault ground motions are represented by equivalent pulses, which have a comparable effect on structural response, but whose characteristics are defined by a small number of parameters. The results demonstrate that structures with a period longer than the pulse period respond very differently from structures with a shorter period. For the former, early yielding occurs in higher stories but the high ductility demands migrate to the bottom stories as the ground motion becomes more severe. For the latter, the maximum demand always occurs in the bottom stories. Preliminary regression equations are proposed that relate the parameters of the equivalent pulse to magnitude and distance. The equivalent pulse concept is used to estimate the base shear strength required to limit story ductility demands to specific target values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
陈波  谢俊举  温增平 《地震学报》2013,35(2):250-261
研究了具有不同自振特性的建筑结构在近断层速度脉冲型及非速度脉冲型地震动作用下的结构层间变形分布,揭示了近断层速度脉冲对工程结构地震响应的特殊影响. 从汶川MS8.0地震近断层强震记录中选取两组典型速度脉冲型记录和非脉冲型记录, 根据确定的目标地震动强度水平,利用时域叠加小波函数法对选择的强震记录进行调整, 使之与目标地震动水平对应的加速度反应谱保持一致, 以此作为结构地震反应分析的地震动输入. 选取具有不同自振特征的3层、11层和20层典型钢筋混凝土框架结构, 建立有限元分析模型, 分别计算在速度脉冲型与非速度脉冲型记录作用下这些结构层间变形分布. 研究表明,速度脉冲型记录与非速度脉冲型记录作用下结构层间变形有明显差异, 且与结构自振特征有关.就低层结构的层间变形而言, 非速度脉冲型记录的影响较速度脉冲型记录的影响大. 随着结构自振周期的增加, 高阶振型的影响更加明显. 与非速度脉冲型记录相比,速度脉冲型记录的结构层间位移反应中值及离散程度较大. 速度脉冲型记录更容易激发高层结构的高阶振型, 产生较大的层间位移反应. 非速度脉冲型记录对中低层结构层间变形影响较大.因此, 在开展近断层结构地震影响评价时, 应考虑近断层速度脉冲的影响.   相似文献   

8.
A series of relatively long-period velocity pulses appearing in the later part of ground motion, which is the characterization of far-source long-period ground motions in basin (“long-period ground motion” for short), is mainly influenced by focal mechanism, basin effect, and dispersion. It was supposed that the successive low-frequency velocity pulses in long-period ground motion caused the resonance of long-period structures in basin, which are of special concern to designers of super high-rise buildings. The authors proposed a wavelet-based successive frequency-dependent pulse extraction (WSFPE) method to identify and extract these pulses with dominant period of interest from long-period ground motions. The pulses extracted by using two frequently used methods (zero-crossing analysis, empirical mode decomposition) were compared to the pulses extracted by using WSFPE. The results demonstrate that the WSFPE provides higher resolution in time–frequency domain than the other two methods do. The velocity pulses extracted by using WSFPE are responsible for the resonance and maximum response of structure subjected to long-period ground motions. WSFPE can be used to make a better understanding of long-period ground motions and to promote the formation of long-period ground motion model which will help the seismic design of long-period structures built in sedimentary basin.  相似文献   

9.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

10.
Vertical loads such as gravity may have an important influence on the seismic response of buildings. In this paper, the continuous shear-beam model is extended to study the seismic demand of shear buildings with consideration of the gravity load effect under near-field ground motions. An analytical solution of the free motion equation of as gravity shear beam model is provided in terms of a Bessel series. A method for computing interstory drift spectra is proposed. The interstory drift spectra for two near-field records with distinct pulses are presented to illustrate the effects of gravity and the damping ratio. The interstory drift spectra are also used to analyze the spectral characteristics of near fault ground motion during the 2008 Wenchuan earthquake. The effects of the gravity load ratio, damping ratio and higher modes are investigated and discussed.  相似文献   

11.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the interstory drift ratio (IDR) demands of building structures subjected to near-fault ground motions having different impulsive characteristics based on generalized interstory drift spectral analysis. The near-fault ground motions considered include the idealized simple pulses and three groups of near-fault ground motions with forward directivity pulses, fling-step pulses and without velocity pulse. Meanwhile, the building systems are equivalently taken as shear-flexural beams with representative lateral stiffness ratios. The IDR distribution of continuous beams subjected to three groups of near-fault ground motions is acquired. It is illustrated that the maximum IDR shifts from the upper half to the lower half of buildings with an increase in lateral stiffness ratio. For long-period systems, the average IDR under impulsive ground motions is significantly greater than that under non-pulse motions. Finally, for moment-resisting frame buildings the forward directivity pulses amplify the drift response of higher modes, while the fling-step pulses excite primarily their contribution in the first mode and generate large deformation in the lower stories. The essential reason for this phenomenon is revealed according to the distinct property of near-fault impulsive ground motions and generalized drift spectral analysis.  相似文献   

14.
This paper proposes bi‐directional coupled tuned mass dampers (BiCTMDs) for the seismic response control of two‐way asymmetric‐plan buildings subjected to bi‐directional ground motions. The proposed BiCTMD was developed from the three‐degree‐of‐freedom modal system, which represents the vibration mode of a two‐way asymmetric‐plan building. The performance of the proposed BiCTMD for the seismic response control of elastic two‐way asymmetric‐plan buildings was verified by investigating the reductions of the amplitudes of the associated frequency response functions. In addition, the investigation showed that the proposed BiCTMD is effective in reducing the seismic damage of inelastic asymmetric‐plan buildings. Therefore, the BiCTMD is an effective approach for the seismic response control of both elastic and inelastic two‐way asymmetric‐plan buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Closed‐form solution for seismic response of adjacent buildings connected by hydraulic actuators with linear quadratic Gaussian (LQG) controllers is presented in this paper. The equations of motion of actively controlled adjacent buildings against earthquake are first established. The complex modal superposition method is then used to determine dynamic characteristics, including modal damping ratio, of actively controlled adjacent buildings. The closed‐form solution for seismic response of the system is finally derived in terms of the complex dynamic characteristics, the pseudo‐excitation method and the residue theorem. By using the closed‐form solution, extensive parametric studies can be carried out for the system of many degrees of freedom. The beneficial parameters of LQG controllers for achieving the maximum response reduction of both buildings using reasonable control forces can be identified. The effectiveness of LQG controllers for this particular application is evaluated in this study. The results show that for the adjacent buildings of different dynamic properties, if the parameters of LQG controllers are selected appropriately, the modal damping ratios of the system can be significantly increased and the seismic responses of both buildings can be considerably reduced. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The extended N2 method taking into account higher mode effects in elevation   总被引:1,自引:0,他引:1  
The N2 method has been extended in order to take into account higher mode effects in elevation. The extension is based on the assumption that the structure remains in the elastic range when vibrating in higher modes. The seismic demand in terms of displacements and storey drifts can be obtained by enveloping the results of basic pushover analysis and the results of standard elastic modal analysis. The approach is consistent with the extended N2 method used for plan‐asymmetric buildings. The proposed procedure was applied to three variants of three steel frame buildings used in the SAC project. The structural response was investigated for two sets of ground motions. Different ground motion intensities were used in order to investigate the influence of the magnitude of plastic deformations. The N2 results were compared with the results of nonlinear response‐history analysis, two other pushover‐based methods (modal pushover analysis (MPA) and modified MPA (MMPA)), and pushover analysis without consideration of higher modes. It was found that a considerable influence of higher modes on storey drifts is present at the upper part of medium‐and high‐rise structures. This effect is the largest in the case of elastic behaviour and decreases with ground motion intensity. The higher mode effects also depend on the spectral shape. The approximate methods (extended N2, MPA and MMPA) are able to provide fair estimates of response in the case of the test examples. Accuracy decreases with the height of the building, and with the intensity of ground motion. The N2 results are generally conservative. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
结构Pushover分析的侧向力分布及高阶振型影响   总被引:52,自引:8,他引:44  
Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。侧向力分布的选取是结构Pushover分析中的一个关键问题,尤其高阶振型影响显著时其选取直接影响Pushover分析的结果。本文通过拟合规范反应谱,挑选了适用Ⅱ类场地的4条地震动记录和4条人工波,对比了典型地震动下非线性时程分析和采用5种不同侧向力分布的Pushover分析的5层、10层和15层钢筋混凝土结构在不同地震动强度时的反应。通过结构振型参与系数量化了各个结构的高阶振型的影响。研究发现,随着结构层数的增加和地震动强度的增加高阶振型的影响变大,侧向力的选取变得十分重要。本文对在高阶振型影响下钢筋混凝土框架结构的Pushover分析中侧向力的选取提出了建议。  相似文献   

18.
An approximation approach of seismic analysis of two‐way asymmetric building systems under bi‐directional seismic ground motions is proposed. The procedures of uncoupled modal response history analysis (UMRHA) are extended to two‐way asymmetric buildings simultaneously excited by two horizontal components of ground motion. Constructing the relationships of two‐way base shears versus two‐way roof translations and base torque versus roof rotation in ADRS format for a two‐way asymmetric building, each modal pushover curve bifurcates into three curves in an inelastic state. A three‐degree‐of‐freedom (3DOF) modal stick is developed to simulate the modal pushover curve with the stated bifurcating characteristic. It requires the calculation of the synthetic earthquake and angle β. It is confirmed that the 3DOF modal stick is consistent with single‐degree‐of‐freedom modal stick in an elastic state. A two‐way asymmetric three‐story building was analyzed by UMRHA procedure incorporating the proposed 3DOF modal sticks. The analytical results are compared with those obtained from nonlinear response history analysis. It is shown that the 3DOF modal sticks are more rational and effective in dealing with the assessment of two‐way asymmetric building systems under two‐directional seismic ground motions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
This study proposes an improved energy‐based approach for quantitative classification of velocity‐pulse‐like ground motions. The pulse amplitude is determined, in its value and in time location, by the amplitude of the half‐cycle pulse having the largest seismic energy. After conducting statistical analyses, a newly‐determined threshold level for selecting pulse‐like ground motions is derived; and then what followed is a comparison analysis of three pulse‐detecting schemes, one using the wavelet analysis, the other two using the energy concept. It is believed that other than providing a useful way of classifying pulse‐like ground motions for structural demand analysis, knowledge of this work could also benefit the development of the ground motion prediction equations accounting for pulse effects, and further to aid the probabilistic seismic hazard analysis in a near‐fault environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号