首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
云南地区地脉动噪声特征分析研究   总被引:2,自引:0,他引:2  
王伟涛  倪四道  王宝善 《地震》2011,31(4):58-67
对地震台站记录到的长时间背景噪声进行互相关可以得到台站间的格林函数, 进而可以对地下介质波速结构和波速变化进行研究。 对背景噪声来源方向和时空演化规律的分析, 是提高结果可靠性的重要基础。 本文利用分布在云南境内的43个宽频带固定台站2008—2010年的垂直分量记录, 计算了两两台站之间的互相关函数, 并用平均能量流的方法研究了云南地区5~10 s以及10~20 s两个频段内地脉动噪声能量的空间分布和时间演化。 研究结果表明, 云南地区5~10 s的地脉动噪声能量优势方向存在明显的季节性变化, 夏季优势能量方位角为180°~210°, 冬季则为70°~100°。 而10~20 s的地脉动噪声优势方向方位角较为稳定, 为180°~210°。 在这两个频段内噪声能量的强度都表现出了较强的季节性变化。 同时发现在5~10 s频段瑞利面波之前存在视速度接近30 km/s的前驱信号, 并对其可能来源进行了分析。  相似文献   

2.
赵玲云  王伟涛  王芳  李娜 《地球物理学报》2021,64(12):4327-4340
噪声源的空间分布和季节变化会对噪声互相关函数中的信号产生一定影响.本文选取了 ChinArrry二期台阵南部的 322 个宽频带地震台,利用其 2013年9 月至 2016年6 月的垂直分量连续记录计算了台站间的互相关函数,进而通过背景噪声能量流的方法,分析了周期频段4~8 s,8~12 s和 12~20 s的噪声能量随时间的演化规律.结果表明,在不同频段,背景噪声的强度及优势来源方向均具明显的季节变化,且不同周期频段的噪声能量变化规律有所差异.总体而言,噪声能量在北半球冬季较强,夏季较弱,与全球海洋活动的季节性变化一致,能量优势来源方向也与全球海浪波高分布相符.同时,在 10~20 s频段范围内,噪声互相关函数中存在较强的异常信号.该信号在环形台阵路径上的到时呈现随方位角的规律变化,且冬季较强,夏季较弱.基于走时的分析表明,该信号是由大西洋北部的一个强噪声源激发产生的.在特定路径上,该信号可能对频散提取产生干扰.研究表明,噪声源分布的不均匀性以及季节变化会对噪声互相关函数中信号的细节形态产生影响,进而影响格林函数的收敛程度,相关精细化研究应对噪声源的特性予以关注.  相似文献   

3.
背景噪声特性及噪声源的分布逐渐成为深化背景噪声互相关研究的关键问题。基于2015—2016年云南地区48个固定数字地震台的连续三分量记录,使用互相关计算提取台站对经验格林函数,基于经验格林函数正负支信噪比特性,结合海浪波高数据,得到云南地区5~10 s,10~20 s,20~40 s台站对信噪比的方位分布和时间变化特征。结果表明:云南地区三分量的噪声源优势方位在不同周期内均有差别,5~10 s噪声源优势方位变化较稳定,当海洋活动相对剧烈时,ZZ,RR分量比TT分量易受到影响;10~20 s噪声源优势方位变化与海洋活动的季节性变化规律较一致,1—6月ZZ,RR分量优势方位角指向E向和WS向,TT分量则以E向为主,7—12月ZZ,RR分量优势方位角明显指向WS向,TT分量在7—9月指向WS向,在10—12月则指向E向和WS向;20~40 s内的噪声强度较小且随时间变化稳定。因此,云南地区噪声能量源主要与北太平洋和孟加拉湾—安达曼海—北印度洋一带的活动有关。  相似文献   

4.
由背景噪声互相关重建格林函数的技术已在地震学中得到了广泛应用,对背景噪声能量的空间分布、强度的季节变化的研究有利于认识噪声互相关函数对格林函数的收敛性。文中利用宁夏及其周边地区33个宽频带台站2008年1月至2012年11月垂直分量的连续记录,计算了两两台站间的互相关函数,并对该地区5~10s及10~20s的背景噪声能量的优势方位及强度随季节的变化进行了分析。结果表明,5~10s的能量主要来自于中国东部的海岸线,其强度具有明显的季节性变化;10~20s的噪声能量不仅强度具有季节性的变化,其优势方向也随季节具有明显变化,受到多个大洋的交替影响。研究表明,宁夏及其邻区的背景噪声场具有较为复杂的特征,在进行后续研究时要予以充分考虑。  相似文献   

5.
利用鄂西地区长时间段宽频地震台站的三分量背景噪声记录,采用波形互相关方法得到台站对间的互相关函数,并通过聚束分析获得瑞雷波和勒夫波的慢度谱,研究鄂西地区背景噪声源的时空分布特征。结果表明,5~10 s周期范围,背景噪声来源于南太平洋且没有季节变化;10~20 s周期范围,慢度谱上显示明显的能量环,表明噪声源来源于多个方向,且表现出强烈和急剧的季节变化;20~40 s周期范围,慢度谱上也存在明显的能量环,其产生机制可能与此周期下提出的次重力波机制相似。在不同的周期范围内,噪声源分布方位有所不同,但在周期10~40 s范围噪声源在各方向均有分布。因此,利用长时间段连续噪声数据计算的互相关函数在周期10~40 s范围内满足背景噪声面波层析成像的理论前提。  相似文献   

6.
云南地区背景噪声互相关函数中体波信号来源初探   总被引:3,自引:0,他引:3  
利用云南地区43个宽频带地震台站记录的2008~2010年垂直分量数据,计算了台站对间的互相关函数并得到了5~40 s周期的瑞利面波信号。研究发现在5~10 s周期范围内,瑞利面波信号之前存在很强的前驱信号,该信号能量优势频段为0.1~0.2 Hz,其到时接近噪声互相关函数零点,视速度约为30 km/s。该信号到时随季节存在正负交替变化,进一步的质点分析表明该信号为出射角较小的P波信号。参考已有的研究,认为远场地脉动噪声源中的P波信号穿过地球深部到达云南地区,形成了噪声互相关函数中视速度较高的体波信号,并且相关的噪声源位置在冬季和夏季分别位于北太平洋和南印度洋,具有明显的季节性空间变化。  相似文献   

7.
甘东南地区宽频带地震台阵背景噪声特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于甘肃东南地区150个宽频带流动台站2010年的垂直分量连续波形记录,通过计算台站对之间背景噪声的互相关函数并叠加得到5—10s和10—20s两个周期的瑞雷面波信号,并通过信噪比和归一化背景能量流两种方法研究了该地区背景噪声源的时空演化特征.研究结果表明,甘东南地区5—10s和10—20s周期的背景噪声源具有明显的季节变化特征和各自的优势方位.5—10s周期的背景噪声在夏季的能量优势方位为170°—240°,噪声源主要位于印度洋,而冬季为100°—150°,主要位于北太平洋;10—20s周期的背景噪声源则比较复杂,其优势方位受多个大洋的交替影响,夏季噪声源能量优势方位为170°—210°,噪声源主要位于印度洋,冬季为90°—150°和310°—355°,噪声源分别位于北太平洋和北大西洋.由于这两个周期的背景噪声源在甘东南地区存在明显的季节变化,因此在利用背景噪声方法研究该地区介质速度结构时需充分考虑噪声源的非均匀性所产生的影响.   相似文献   

8.
从江苏省数字地震台网2011年的宽频带记录数据中, 选取了不同背景噪声区域下的两组不同台间距的台站(A, B每组4个台站), 两组台站的平均台间距分别为44.6和30.5 km. 首先, 运用滑动窗互相关技术, 测量出各台站对间背景噪声互相关格林函数随时间的偏移量ΔDSi-Sj, 然后通过奇异值分解来求解由ΔDSi-Sj与系数矩阵构成的超定方程, 从而计算出单个台站的时钟误差ΔSi;并引入协方差矩阵来估计不同置信水平下计算结果的误差范围. 计算结果表明, 除去明显的钟差误差(>3 s)外, 8个台站的时间误差平均均方根为0.4215 s, A与B两组台站在置信水平为95%时的时间误差范围分别为±0.4544 s和±0.4283 s; 而采用HYPOSAT定位方法对2010—2011年江苏地区的地震进行定位, 得到的平均走时残差约为0.386 s. 两者的计算精度基本相当, 表明基于背景噪声互相关格林函数计算出的单台时间误差是可信的.   相似文献   

9.
地球背景噪声干涉应用研究的新进展   总被引:1,自引:0,他引:1  
对地震台记录到的长时间的地球背景噪声进行互相关处理,得到的互相关函数可以近似地表征这两个台站之间的格林函数,这种数据处理方法被称为背景噪声干涉.近年来,背景噪声干涉研究在理论和实践上都有了长足进展,并被广泛用于地下波速结构及其演化规律的研究.本文首先简单介绍了背景噪声干涉研究的概念和理论依据,进而重点介绍了针对噪声源性质、互相关函数的波形到时和振幅特性的应用研究.通过对这三个方面研究的回顾,分析总结了该研究领域的新进展及需要解决的问题,并对背景噪声干涉研究的新特点进行了分析和展望.  相似文献   

10.
寇华东  王伟君  彭菲  闫坤 《地震》2020,40(4):103-114
时钟精度是地震观测中最重要的参数之一, 需要通过卫星授时信号来保障。 当卫星信号被屏蔽或仪器守时部件出现问题时, 地震计内部时钟会逐渐漂移, 给后续数据处理带来极大困扰。 利用地震背景噪声台站对互相关提取的经验格林函数, 不仅可以用于结构成像, 也可以用于检测波形时钟是否存在漂移, 并获得时钟漂移幅度。 使用地震背景噪声互相关方法对2017—2019年云南永胜地区4个流动观测台站的连续波形进行了时钟漂移检测, 结果发现部分流动台站在不同时间段存在不同模式的时钟漂移, 最大幅度可达到1.75 s。 同时, 利用云南宾川气枪重复震源激发的信号进行互相关计算, 对上述结果进行了验证, 发现两种结果具有较好的一致性。 研究表明, 背景噪声互相关对波形的时钟漂移有较高的灵敏度, 能够有效检测出时钟问题, 防止波形被误用, 可为后续波形时钟校正提供参考信息。  相似文献   

11.
为探究芦山M7.0级地震后5年多来,震源区龙门山断裂带西南段介质波速的变化规律,本文基于2012年4月至2018年4月共6年的连续波形数据,运用移动窗互谱与频域偏振等分析方法,结合背景噪声源的特性,对不同深度范围内的相对波速变化以及震后的恢复过程与机制进行了研究.获得的主要认识包括:(1)年尺度而言,震源区周期为1~20 s的背景噪声场相对稳定,但成分复杂、2~10 s频带内至少存在2个能量相对稳定的噪声源;不同周期噪声的能量,在月变与季节性上的变化特征差异明显.(2)获得了长时间尺度、不同频带内介质相对波速的背景变化水平,1~2 s、2~4 s的波动幅度(约为±0.04%)与季节性变化规律强于4~10 s、10~20 s的,结合与降雨量相关的地下水位模型能很好地解释其变化规律.(3)震源区的同震波速降低现象清晰,降幅约为0.08%~0.1%;空间上,波速下降最为显著的区域主要集中在龙门山断裂带两侧约70 km范围内,其中四川盆地一侧平均约为0.1%,略高于青藏高原(0.08%)一侧;在断裂带内的降速不显著.对不同子频带进行测量的结果显示,震后除10~20 s外,其余3个子频带的相对波速在震后较短时间内(约20天左右)均出现较大幅度的波速降低现象,其中4~10 s的平均降速最大(约为0.08%),分析认为主震及大量余震的松弛效应是引起介质波速下降的主要原因.(4)震后大约1年左右,波速变化基本恢复到震前水平,且至2018年4月前未观察到大幅的波速变化现象,总体上各频带内的结果均沿零线小幅波动.  相似文献   

12.
基于祁连山地区78个地震台站的垂直分量连续波形记录,计算台站对之间背景噪声的互相关函数,并叠加得到5-10 s和10-20 s两个周期的瑞利面波信号。利用归一化振幅方法,分析不同周期范围的噪声源能量在不同方位随季节变化的规律。研究结果显示:祁连山地区5-10 s周期背景噪声的能量优势来源,夏季集中在110°-170°方位,冬季集中在300°-350°方位,但在110°-150°方位也有相对微弱的能量分布,表明第二微震带的噪声能量来源在夏季主要来源于太平洋的海洋活动,冬季主要来源于大西洋的海洋活动;10-20 s周期背景噪声的能量优势来源在夏季集中在70°-150°和170°-230°方位,在冬季则集中在290°-350°和70°-130°方位,表明第一微震带的噪声能量在夏季主要来源于印度洋的海洋区域,冬季主要来源于北大西洋和太平洋。由于2个周期的背景噪声源在祁连山地区存在明显的季节差异,因此在利用背景噪声方法研究该地区介质速度结构时,需充分考虑噪声源非均匀性产生的影响。  相似文献   

13.
利用2018年1月至2020年3月恩施地震台站观测的垂直分量连续波形数据,通过计算噪声功率谱密度和概率密度函数,统计其不同频段功率谱密度分布情况,对比分析疫情前后恩施地区噪声水平变化特征.同时,将2018年、2019年和2020年垂直向地震噪声的加速度幅值进行对比,发现春节前几日的加速度幅值变化曲线高度一致,表明这三年...  相似文献   

14.
The diumal variations in the parameters of Pc3 (20–60 mHz) and Pc4 (10–19 mHz) pulsations at latitudes of the dayside cusp and polar cap have been studied using data of the magnetic stations of the trans-Antarctic meridional profile for the time interval from January to March 1997 (local summer) under weakly disturbed geomagnetic conditions (AE ≤ 250 nT). The technique for estimating pulsation parameters is based on the separation of the wave packets and noise. The diumal variations in the hourly average parameters of the wave packets in the Pc3 and Pc4 bands and noise in the Pc3-4 band (10–60 mHz)—the average number of wave packets, energy of wave packets and noise, and energy of a single wave packet—turned out to be different for the stations located deep in the polar cap (Φ ~ 87°) and at the latitudes of the dayside polar cusp (Φ ~ 70°) and auroral oval (Φ ~ 66°). Several sources of pulsations caused by different channels of wave energy penetration into the magnetosphere through the dayside cusp, dayside magnetopause, and dawn flank of the magnetotail apparently exist at high latitudes.  相似文献   

15.
对福建气枪源探测实验中所接入315个实时传输台站分1~10 Hz、0.1~1 Hz、10~60 s 3个频段进行台网噪声水平评估研究。统计240个小时的背景噪声记录,得到各台站的噪声水平MODE线,再利用本文提出的全球新高低噪声模型线与MODE线所占面积比来量化台网噪声水平,根据不同色标将台网噪声水平划分为十个等级进行评估,评选出优质台站。进一步研究背景噪声对气枪激发效果的影响,验证了台站接收能力与背景噪声密切相关,分析了不同台基(固定、加密、流动、海底)环境噪声水平的影响,得出环境噪声水平由低到高分别为固定台、加密台、流动台、海底台。通过台网噪声评估能有效提高气枪震源信号的检测能力,也为优质台站重点维护提供重要参考。  相似文献   

16.
From a conventional viewpoint, seismic‐prospecting background noise is usually regarded as the product of a stationary and Gaussian stochastic process. In this paper, we use statistical methods to investigate the properties of the land‐seismic‐prospecting background noise on stationarity, Gaussianity, power spectral density, and spatial correlation. We use and analyse the passive noise records collected by receiver arrays at different typical geological environments (desert, steppe, and mountainous regions). Differences exist in the statistical properties of the background noise from different geological environments, but we still find some common characteristics. It is shown that the background noise is not strictly stationary and has different stationary properties over different timescales. Most of the noise records appear to be a Gaussian process when examined over a period of about 20 s but are found to be non‐Gaussian when examined over shorter periods of about 1 s. The background noise is a kind of colored noise, and its energy mainly concentrates in the low‐frequency bands. We also find that the spatial correlation of the background noise is weak. The results of this paper provide a scientific understanding about the properties of seismic‐prospecting background noise.  相似文献   

17.
Ambient seismic noise is caused by a number of sources in specific frequency bands. The quantification of ambient noise makes it possible to evaluate station and network performance. We evaluate noise levels in Norway from the 2013 data set of the Norwegian National Seismic Network as well as two temporary deployments. Apart from the station performance, we studied the geographical and temporal variations, and developed a local noise model for Norway. The microseism peaks related to the ocean are significant in Norway. We, therefore, investigated the relationship between oceanic weather conditions and noise levels. We find a correlation of low-frequency noise (0.125–0.25 Hz) with wave heights up to 900 km offshore. High (2–10 Hz) and intermediate (0.5–5 Hz) frequency noise correlates only up to 450 km offshore with wave heights. From a geographic perspective, stations in southern Norway show lower noise levels for low frequencies due to a larger distance to the dominant noise sources in the North Atlantic. Finally, we studied the influence of high-frequency noise levels on earthquake detectability and found that a noise level increase of 10 dB decreases the detectability by 0.5 magnitude units. This method provides a practical way to consider noise variations in detection maps.  相似文献   

18.
本文利用ChinArray二期大孔径台阵677个台站2013年10月至2016年4月期间的垂直分量记录,计算了不同路径上的噪声互相关函数(Noise Cross-correlation Function,NCF),观测到4~8 s和8~12 s频带内的NCF零时附近存在显著的高视速度信号.基于NCF的慢度聚束分析表明,这些信号由背景噪声中的远震P、PP和PKPbc波干涉产生,且以P波能量为主.位置聚束图像表明,P波类型的噪声源主要分布在北大西洋、北太平洋和南大洋凯尔盖朗深海高原,其位置对应于平均海浪波高较高的区域.同时,在阿拉斯加海岸及澳大利亚附近海域也存在P波噪声源.利用已识别的P波噪声源位置,计算了其在NCF中产生的干涉信号理论到时,结果与实际观测一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号