首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
九江-瑞昌地震序列的波速比特征研究   总被引:6,自引:0,他引:6  
根据多台和达法,利用数字地震观测记录对九江-瑞昌地震序列的波速比特征进行研究,获得了具有参考价值的结果:(1)在震源深度10km上下,波速比平均值存在差异,差异层位正好是江西地区上地壳和中地壳的分界层位,与2005年11月26日九江—瑞昌5.7级地震的震源深度一致,这种现象可能反映了震源位置附近的介质物理性质和化学性质存在变异,可能与这次地震的孕育和发生有着密切联系。(2)在震源区的较小范围内,沿地震序列的北西优势走向,两侧的波速比平均值大小不同,反映出地质结构和岩石性质存在差异,其差异分界线走向与震源机制解中的一组北西向节面走向一致,推测九江—瑞昌5.7级地震可能是由一条北西向断裂活动引起的。(3)2005年12月3日ML3.9级余震前,波速比连续出现超出警戒线的高值异常,回落到平均值以下后地震发生。目前九江—瑞昌地震序列的波速比持续处于高值异常,应当警惕回落到平均值以下后发生显著有感地震。  相似文献   

2.
杨中书  李超 《华南地震》2006,26(3):77-82
应用Jeanne L.Hardebeck和Peter M.Shearer编制的利用P波初动和振幅比计算地震震源机制解的程序,使用九江-瑞昌流动地震台观测的地震资料,初步计算了九江-瑞昌地震余震的震源机制;并对单独利用P波初动和利用初动及振幅比这两种计算方法进行了比较.综合最优计算结果,九江-瑞昌地震余震震源机制解为:走向174°,倾角62°,滑动角43°.  相似文献   

3.
采用震源位置和速度结构的联合反演方法确定2005年九江一瑞昌5.7级地震序列的分布和震源区的速度结构.结果显示九江一瑞昌地震序列存在NW330.方向和NE550方向的两组共轭分布,其中NW330.方向的优势分布更为明显;震源深度分布在3~18km的范围.地震主体破裂发生在上地壳-中地壳过渡层的P波速度低速区内,主震发生后余震向东南与西北方向两头扩展,其中往西北方向破裂时可能遇到了障碍体,积累的能量转向西南-北东方向继续破裂,引发了4.8级强余震.  相似文献   

4.
2011年Ms4.6瑞昌-阳新地震的震源机制及发震构造探讨   总被引:1,自引:1,他引:0  
2011年Ms4.6瑞昌-阳新地震是瑞昌地区继2005年M5.7地震后的又一中等强度地震,文中从多角度对此次地震的发震构造进行了探讨.利用双差定位法进行的地震精定位结果显示,主震发生在NE向断裂的西南端,余震的分布则呈现出沿NNE和NW两个方向展布的特征.野外考察发现,等震线长轴方向为NE,沿此方向烈度衰减较慢.考虑震源时间函数的影响,采用波形反演方法得到了此次地震的震源机制解.节面Ⅰ走向302.2°,倾角68.2°,滑动角-3.8°;节面Ⅱ走向33.6°,倾角86.5°,滑动角-158.1°.综合分析认为,NNE向郯庐断裂的南端隐伏段(瑞昌-武穴断裂)为此次地震的发震构造,而与NW向断裂的共轭作用造成了部分余震沿着NW向分布的特征.  相似文献   

5.
2011年9月10日瑞昌-阳新地震发震构造初探   总被引:1,自引:0,他引:1  
基于密集流动台阵,联合使用主事件法和 sPL 深度震相,对2011年9月10日瑞昌-阳新MS4.6地震及其余震序列进行重新定位,获得更为准确的震源位置。结果显示:重新定位后主震的水平位置为29.70°N,115.47°E,误差约1 km;震源深度为15 km,误差约2 km。结合地震序列定位结果、主震震源机制解和震区NE向断层发育的构造背景,初步探讨主震可能的发震构造。  相似文献   

6.
应用Jeanne L.Hardebeck和Peter M.Shearer编制的利用P波初动和振幅比计算地震震源机制解的程序,使用九江—瑞昌流动地震台观测的地震资料,初步计算了九江—瑞昌地震余震的震源机制;并对单独利用P波初动和利用初动及振幅比这两种计算方法进行了比较。综合最优计算结果,九江—瑞昌地震余震震源机制解为:走向174°,倾角62°,滑动角43°。  相似文献   

7.
利用来源于江西区域台网和中国地震台网共6个台的宽频带数字地震记录,采用CAP方法反演了2005年11月26日九江—瑞昌5.7级地震和4.8级强余震的震源机制解,并结合地震序列的精确定位结果和区域地质背景讨论了发震构造.结果显示,5.7级主震的最佳双力偶解为节面Ⅰ走向223°,倾角75°,滑动角144°;节面Ⅱ走向324°,倾角55°,滑动角18°.4.8级强余震的最佳双力偶解为节面Ⅰ走向54°,倾角71°,滑动角-160°;节面Ⅱ走向317°,倾角71°,滑动角-20°,这两次地震的震源机制解不完全一致.地震序列在震中空间分布和震源深度分布上也具有复杂性.5.7级主震发生后,余震活动从SE向NW、从浅部往深部发展,在破裂过程中可能遇到障碍体,触发了4.8级强余震.5.7级主震的发震构造可能为隐伏在瑞昌盆地内的洋鸡山—武山—通江岭NW向断裂,4.8级强余震的发震构造可能为瑞昌盆地西北缘的丁家山—桂林桥—武宁NE向断裂北段.  相似文献   

8.
利用来源于江西区域台网和中国地震台网共6个台的宽频带数字地震记录,采用CAP方法反演了2005年11月26日九江—瑞昌5.7级地震和4.8级强余震的震源机制解,并结合地震序列的精确定位结果和区域地质背景讨论了发震构造.结果显示,5.7级主震的最佳双力偶解为节面Ⅰ走向223°,倾角75°,滑动角144°;节面Ⅱ走向324°,倾角55°,滑动角18°.4.8级强余震的最佳双力偶解为节面Ⅰ走向54°,倾角71°,滑动角-160°;节面Ⅱ走向317°,倾角71°,滑动角-20°,这两次地震的震源机制解不完全一致.地震序列在震中空间分布和震源深度分布上也具有复杂性.5.7级主震发生后,余震活动从SE向NW、从浅部往深部发展,在破裂过程中可能遇到障碍体,触发了4.8级强余震.5.7级主震的发震构造可能为隐伏在瑞昌盆地内的洋鸡山—武山—通江岭NW向断裂,4.8级强余震的发震构造可能为瑞昌盆地西北缘的丁家山—桂林桥—武宁NE向断裂北段.  相似文献   

9.
利用在九江-瑞昌MS5.7地震震中附近架设的丁家山台(DJS)、狮子洞台(SZD)和武蛟台(WUJ)的地震波形资料,采用S波分裂系统分析方法,对余震进行了S波分裂分析。结果表明,震中距较小、台站附近断层分布复杂的丁家山台(DJS)的慢波时间延迟相对较大,快波偏振方向不太集中。台站附近断裂分布单一的武蛟台(WUJ)快波偏振优势方向与断裂走向角度相差约35°,与区域主压应力方向也不一致。台站附近无断层通过的狮子洞台(SZD)快波偏振优势方向接近区域主压应力方向。慢波时间延迟大小与震源深度没有明显的规律性关系。  相似文献   

10.
江西九江-瑞昌震区的尾波衰减特征初探   总被引:1,自引:1,他引:1  
根据单次散射模型,利用数字地震记录资料研究和讨论了江西省九江-瑞昌震区的尾波衰减特征,获得了可信的结果。经过计算,震中距30 km内的5个地震台站得到Q0值在75~79内波动。η值大体可以分为两类:九江台和范镇台η值为0.86~0.88;丁家山、狮子洞和武皎台η值为0.94~0.97,这种差别可能与台站方位有一定的关系。考虑到此次地震的破裂尺度不会太大,可采用后3个台的计算结果,拟合得到九江-瑞昌震区尾波Qc值随频率的变化关系为Qc(f)=(77.5±15.6)f0.96±0.09。九江-瑞昌震区的Q0值为77.5,η值为0.96,与云南武定、施甸地区接近,这种类似现象是构造运动活跃地区的特征体现还是反映了中强地震破裂区局部介质性质的一种共性,有待于进一步深入研究。本研究参与计算的5个台站最大尾波流逝时间为40~44 s,得到的平均采样体深度约为53 km,相对江西地区地壳平均厚度33 km而言,结果反映的是九江-瑞昌震区地壳和上地幔顶部的介质性质。  相似文献   

11.
12.
正SCIENCE CHINA Earth Sciences,an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China,and published by Science China Press and Springer,is committed to publishing high-quality,original results in both basic and applied research.  相似文献   

13.
正SCIENCE CHINA Earth Sciences,an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China,and published by Science China Press and Springer,is committed to publishing high-quality,original results in  相似文献   

14.
In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.  相似文献   

15.
16.
17.
18.
正SCIENCE CHINA Earth Sciences,an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China,and published by Science China Press and Springer,is committed to publishing high-quality,original results in both basic and applied research.  相似文献   

19.
正Director:Shangfu Kuang,China Vice-directors:Chunhong Hu,China Duihu Ning,China Guangquan Liu,China The International Research and Training Center on Erosion and Sedimentation(IRTCES)was jointly set up by the Government of China and UNESCO on July 21,1984.It aims at the promotion of international exchange of knowledge and cooperation in the studies of erosion and  相似文献   

20.
Feedback mechanisms, which operate upstream through drawdown and backwater effects and downstream through sediment discharge are responsible for channel evolution. By combining these mechanisms with channel processes it euables a dynamic process-response model to be developed to simulate the initial evolution of straight gravel-bed channels. When erosion commences on a land surface, sediment entrained in the headwater reach by hydraulic action is selectively transported, deposited and reworked. This produces a damped oscillation between degradation and aggradation as the channel and valley respond to spatial and temporal variations in sediment calibre and hydraulic conditions. The initial cut and fill phases are responsible for valley incision and floodplain development while secondary and subsequent activity can produce river terraces. Eventually sediment entrainment in the headwaters declines as slopes are reduced. Subsequent channel evolution is relatively insignificant because it is dependent on local weathering activity producing material that can be transported on declining slopes. Therefore landforms produced during the initial phase of development, when local weathering was non-limiting, dominate the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号