首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas samples from some fumaroles at ‘La Fossa' crater and Baia di Levante on Vulcano Island and from a diffuse soil gas emission were analysed during 1995–1996, along with water samples from thermal wells in the area of Vulcano Porto. During 1996, we observed a significant increase both in the gas/steam ratio and in the CO2 concentration, as well as strong variations in δ13CCO2, δDH2O and δ18OH2O of fumarolic gases. These variations are probably related to an increased inflow of deep fluids of magmatic origin. The temperatures of fumaroles did not show remarkable variations except for fumarole F11. In this case, temperature increased by about 80°C from February to August 1996. During the same period, remarkable variations in temperature, phreatic level and chemical and isotopic composition of water were also recorded in one of the geothermal wells in the Vulcano Porto area (Camping Sicilia; T60°C). The observed variations in this well are probably related to a pressure build-up, occurring at least in the surficial part of the system, because of increased gas flux and/or decreased permeability of the fumarolic degassing system. Chemical and isotopic composition of the water showed that during this evolutionary phase, the content of fumarolic condensate in this well was about 80 to 90%. Based on the observation of physical and chemical variables of the Camping Sicilia fluids, during this phase of activity, it is concluded that this area is affected by a phreatic eruption hazard if a volcanic episode with high energy discharge in a limited time span occurs. It follows that this well may be considered as a preferential point for volcanic activity monitoring, both in the case of normal routine surveillance and in the case of inaccessibility to the crater area.  相似文献   

2.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Since October 2001, four soil CO2 flux stations were installed in the island of São Miguel (Azores archipelago), at Fogo and Furnas quiescent central volcanoes. These stations perform measurements by the accumulation chamber method and, as the gas flux may be influenced by external variables, the stations are equipped with several meteorological sensors. Multivariate regression analysis applied to the large datasets obtained allowed observing that the meteorological variables may influence the soil CO2 flux oscillations from 18% to 50.5% at the different monitoring sites. Additionally, it was observed that meteorological variables (mainly soil water content, barometric pressure, wind speed and rainfall) play a different role in the control of the gas flux, depending on the selected monitoring site and may cause significant short-term (spike-like) fluctuations. These divergences may be potentially explained by the porosity and hydraulic conductivity of the soils, topographic effects, drainage area and different exposure of the monitoring sites to the weather conditions. Seasonal effects are responsible for long-term oscillations on the gas flux.  相似文献   

4.
Soil gas investigation is a useful tool to detect active faults. The sudden appearance of soil gas anomalies in zones of deep-reaching faults represents a promising potential precursor of earthquakes and volcanic eruptions. In volcanic areas the development of soil gas monitoring techniques is particularly important, as they can represent, together with remote sensing techniques, the only geochemical methods that can be safely applied during volcanic unrest, when it becomes impossible or too dangerous to sample crater fumaroles. A soil gas survey was carried out in June 1993 at the main island of Thera, in the Santorini volcanic complex. CO2 flux and CO2 and helium concentrations were measured at 50 cm depth for 76 points covering the entire island, with a spacing of 500 m or less. Several anomalous soil degassing sites have been detected. The main anomalies correspond to the Kolumbos line and to the Kameni line, two volcano-tectonic fault systems that controlled all the historic volcanic activity of Santorini. A third anomaly is related to a gas-leaking fault cutting the geothermal field of southern Thera. Soil gas data, together with geovolcanological and seismological evidence, indicate that the Kolumbos and Kameni lines are the most probable sites for future volcanic or seismic reactivation, and provide the basis for the establishment of a new geochemical monitoring technique at Thera.  相似文献   

5.
Here, we report the first continuous data of geochemical parameters acquired directly from the active summit crater of Vulcano. This approach provides a means to better investigate deep geochemical processes associated with the degassing system of Vulcano Island. In particular, we report on soil CO2 fluxes from the upper part of Vulcano, a closed-conduit volcano, from September 2007 to October 2010. Large variations in the soil CO2 and plume SO2 fluxes (order of magnitude), coinciding with other discontinuous geochemical parameters (CO2 concentrations in fumarole gas) and physical parameters (increase of shallow seismic activity and fumarole temperatures) have been recorded. The results from this work suggest new prospects for strengthening geochemical monitoring of volcanic activity and for improving the constraints in the construction of a “geochemical model”, this being a necessary condition to better understand the functioning of volcanic systems.  相似文献   

6.
Soil CO2 flux is strongly influenced by precipitation in many ecosystem types, yet knowledge of the effects of precipitation on soil CO2 flux in semi‐arid desert ecosystems remains insufficient, particularly for sandy soils. To address this, we investigated the response of sandy soil CO2 flux to rainfall pulses in a desert ecosystem in northern China during August–September 2011. Significant changes (P < 0.05) were found in diel patterns of soil CO2 flux induced by small (2.1 mm), moderate (12.4 mm) and large (19.7 mm) precipitation events. Further analysis indicated that rainfall pulses modified the response of soil CO2 flux to soil temperature, including hysteresis between soil CO2 flux and soil temperature, with Fs higher when Ts was increasing than when Ts was decreasing, and the linear relationship between them. Moreover, our results showed that rainfall could result in absorption of atmospheric CO2 by soil, possibly owing to mass flow of CO2 induced by a gradient of gas pressure between atmosphere and soil. After each precipitation event, soil CO2 flux recovered exponentially to pre‐rainfall levels with time, with the recovery times exhibiting a positive correlation with precipitation amount. On the basis of the amounts of precipitation that occurred at our site during the measurement period (August–September), the accumulated rain‐induced carbon absorption evaluated for rainy days was 1.068 g C m?2; this corresponds approximately to 0.5–2.1% of the net primary production of a typical desert ecosystem. Thus, our results suggest that rainfall pulses can strongly influence carbon fluxes in desert ecosystems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets controlP-T conditions in the system.P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.  相似文献   

8.
Seismic activity, ground deformation, and soil and fumarole temperatures acquired during 2004–2007 at Vulcano (Aeolian Islands) are analysed and the time relations among the different time series are discussed. Changes in temperature of fumarolic gases took place during four “anomalous” periods (November 2004–March 2005; October 2005–February 2006; August–October 2006; July–December 2007) at the same time as an increasing number of volcano-seismic events. In particular, the temperatures at high temperature vents and at steam heated soil ranged in time from 180 to 440°C and from 20 to 90°C, respectively. The maximum daily number of volcano-seismic events was 57, reached during the second anomalous period. This seismicity, characterised by focal depth generally lower than 1?km below sea level (b.s.l.) and composed of different kinds of events associated to both resonance and shear failure processes, is related to the shallow dynamics of the hydrothermal system. During the analysed period, very few volcano-tectonic earthquakes took place and tilt recordings showed no sharp or important changes. In light of such observations, the increases in both temperature and volcano-seismic events number were associated to increases in the release of gas from a deep and stable magma body, without magma intrusions within the shallow hydrothermal system. Indeed, a greater release of gas from depth leads to increased fluid circulation, that can promote increases in volcano-seismic events number by both fracturing processes and resonance and vibration in cracks and conduits. The different trends observed in the measured geochemical and geophysical series during the anomalous periods can be due to either time changes in the medium permeability or a changing speed of gas release from a deep magma body. Finally, all the observed variations, together with the changing temporal distribution of the different seismic event kinds, suggest that the hydrothermal system at Vulcano can be considered unsteady and dynamic.  相似文献   

9.
Permeability, storage capacity and volumetric strain were measured in situ during deformation of hot-pressed calcite aggregates containing 10, 20, and 30 wt% quartz. Both isostatic and conventional triaxial loading conditions were used. The tests were performed at confining pressure of 300 MPa, pore pressures between 50 to 290 MPa, temperatures from 673 to 873 K and strain rates of 3 × 10−5 s−1. Argon gas was used as the pore fluid. The initial porosities of the starting samples varied from 5% to 9%, with higher porosity correlated to higher quartz content. Microstructural observations after the experiment indicate two kinds of pores are present: 1) Angular, crack-like pores along boundaries between quartz grains or between quartz and calcite grains and 2) equant and tubular voids within the calcite matrix. Under isostatic loading conditions, the compaction rate covaries with porosity and increases with increasing effective pressure. Most of the permeability reduction induced during compaction is irreversible and probably owes to plastic processes. As has been found in previous studies on hot-pressed calcite aggregates, permeability, k, is nonlinearly related to porosity, ϕ. Over small changes in porosity, the two parameters are approximately related as kϕn. The exponent n strongly increases as porosity decreases to a finite value (from about 4 to 6% depending on quartz content), suggesting a porosity percolation threshold. When subjected to triaxial deformation, the calcite-quartz aggregates exhibit shear-enhanced compaction, but permeability does not decrease as rapidly as it does under isostatic conditions. During triaxial compaction the exponent n only varies between 2 and 3. Non-isostatic deformation seems to reduce the percolation threshold, and, in fact, enhances the permeability relative to that at the same porosity during isostatic compaction. Our data provide constraints on the governing parameters of the compaction theory which describes fluid flow through a viscous matrix, and may have important implications for expulsion of sedimentary fluids, for fluid flow during deformation and metamorphism, and melt extraction from partially molten rocks.  相似文献   

10.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   

12.
M. C. Tom Kuo 《Ground water》2022,60(4):510-517
Few published data are available for two-phase flow in fractures from field studies. All measurements of relative permeability reported in the literature were done in laboratory-scale. The in situ water saturations are normally not known for multiphase flow in natural fractures; therefore, the direct measurements of relative permeability are difficult in field-scale. With the help of a case study before and after the 2008 Mw 5.4 Antung earthquake, groundwater radon was used as a tracer to determine the gas and water saturations in a small naturally fractured aquifer. Well tests were also conducted to estimate aquifer transmissivity before and after the 2008 Antung earthquake. Anomalous declines in both groundwater radon concentration and transmissivity were observed precursory to the 2008 Antung earthquake. Both declines are two precursory phenomena having a common effect of gas bubbles. Using the data from well tests and radon tracer, one data point of water relative permeability can be obtained for in situ fractures. This data point reveals strong phase interference between water and gas bubbles for multiphase flow in natural fractures. Both the data of well tests and radon tracer are essential to gain an improved understanding of mass transfer behavior of groundwater-dissolved gases between water and gas phases.  相似文献   

13.
Temporal variations in soil erosion resistance are often the result of decreased soil cohesion due to physical disruption followed by a regain of soil strength through a process called aging, stabilization or consolidation. The goal of this study was to quantify changes in soil cohesion due to aging and subsurface hydrologic condition using a fluidized bed method. A flume experiment was also used to verify that findings from the fluidized bed experiment translated into measurable changes in soil erodibility. Tests were performed on three different soils (a Miami soil, a Cecil soil and Crosby–Miami soil complex). Changes in soil cohesion due to aging and drainage state were successfully detected by the fluidized bed technique. For all soils tested, cohesion developed in a two‐stage process where an increase in cohesion with aging duration immediately after the soil was rewetted, was followed by a decrease in cohesion which often started after 24 h of aging. When soils were aged at field capacity, the resulting cohesion measured by the fluidized bed method was on average 3.13 times higher than that measured when aging was performed at saturation. Trends in soil rill erodibility Kr with aging duration measured in the flume experiment were consistent with the two‐stage pattern observed in soil cohesion estimates but the legacy effect of suction applied at field capacity faded after 72 h of aging. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a field experiment was conducted to investigate the soil water dynamics and water percolation through the deep vadose zone. A calibrated HYDRUS‐1D model was used to simulate the process of soil water movement and the water budget. Based on the measured volumetric soil water contents, the model was well calibrated and validated. Then, we conducted scenario analyses to determine the combined effects of irrigation amount (IA), antecedent soil moisture (AM), crop evapotranspiration, and deep percolation (DP) in an irrigation event. Four IAs (5, 10, 15, and 20 cm) and three AM conditions (AM‐1, AM‐2, and AM‐3) were controlled in the scenario analyses. The results indicate that according to the Se's (effective saturation) values status and the observed or simulated depth, there could be different conclusions on the influence of DP. Under different IAs in dry (AM‐1) and medium (AM‐2) AM status, DP changed slightly; it was 0.39 and 2.47 cm in AM‐1 and 0.40 and 2.48 cm in AM‐2 for the summer maize and winter wheat crop, respectively; the AM had a crucial contribution to DP. While under the condition of wet AM (AM‐3) or small observation depth, the water inputs could have a significant effect on DP. According to increasing irrigation intensity, the higher values of Se (>0.6) in the whole profile were only displayed between 70 and 300 cm at AM‐1, 70–500 cm at AM‐2, and 70‐below 600 cm at AM‐3, which were gradually extended and moved down with increasing AM. Hence, the IA significantly affected the water percolation at a depth of 200 cm, whereas there was a weak influence at 600 cm except in AM‐3. Furthermore, in the higher values of the Se (>0.65) domain, the correlation between IA and DP was an exponential function and significantly under P < 0.05. In addition, DP began to occur when the soil water content was equal to or greater than 0.75 times that of the field water capacity or the Se > 0.65. When the coarse silt layer became embedded in the silt clay soil profile, it lagged the process of water transport but did not affect permeability in the end.  相似文献   

15.
Different systems of gas collection were tested on Vulcano Island (Italy). Sampling flasks do not keep the real H2S/SO2 ratio. Warm chemical traps (Sicardi, 1940) and warm field gas chromatography keep the gas samples in equilibrium. A mixture of H2S and SO2 is emitted at the crater but at the sea shore H2S is predominant. Such difference is interpreted as due to the percolation across near-surface water tables. The same gas composition was observed within magmatic gases (Merapi) using identical techniques and the difference of composition at the shore and at the crater can be used to explain different aerosols compositions.  相似文献   

16.
ABSTRACT

The effects of topsoil addition of rice-husk dust (RHD) and cattle dung (CD), alongside surface mulching with dry grasses/legume, on the infiltration characteristics and intrinsic structural properties of a deep, well-drained soil in southeastern Nigeria are assessed. Treatments are RHD-amended, CD-amended and “unamended”, each plot being either surface-mulched or left bare, with the unamended-bare plots as control. Amendments and mulch were applied at 20 t/ha equivalents. Their effects on the soil’s infiltration characteristics 7 months later were not evident; however, there was a tendency for differences: CD-amended ≥ RHD-amended ≥ unamended and surface-mulched ≥ bare-surface. By contrast, saturated hydraulic conductivity (Ks ) differed thus: CD-mulched ≥ unamended-mulched > the rest. Similar values were recorded for Ks (50.89 cm/h) and final infiltration rate (50.74 cm/h) only under CD-amended plots, which also showed the highest values (43.50 cm/h) for transmissivity of the soil. Soil penetrometer resistance was lowest in CD-amended plots (113.44 kPa) and highest in unamended plots (166.78 kPa). Topsoil addition of cattle dung and surface mulching could increase infiltration, though marginally, and permeability of coarse-textured tropical soils beyond the season of their application when their effects on soil structure have almost waned.  相似文献   

17.
Discharge from subaereal and submarine gas vents of the Baia di Levante beach gases from the Vulcano Island were sampled for major and trace gas components in May and November 1995.Chemical compositions and equilibrium calculations suggest three different groups of CO2-rich gas emissions depending on their distance from the La Fossa crater: (1) gas vents close to the Faraglione area are characterised by high H2S contents, high calculated equilibrium temperatures based on inorganic species and relatively high proportion of alkene compounds; (2) gas vents close to Vulcanello are characterised by low calculated equilibrium temperatures and low amounts of alkenes; and (3) Pontile sample has the highest equilibrium CO2 pressure (up to 68 bars) which may account for the observed absence of benzene. The relative large variability of H2S in the Baia di Levante beach gas discharge may be attributed to either different interactions between iron sulphides and weakly acid waters or catalytic effect of elemental sulphur on the de-hydrogenation of cyclo-hexane. Thermodynamic calculations suggest that the main inorganic species and CH4 may have re-equilibrated at relatively shallow depth (10–200 m b.s.l. and 30–600 m b.s.l. for a lithostatic and hydrostatic pressure, respectively). The slow kinetics of reactions in the CnH2n/CnH2n+2 systems, with respect to that of CH4–CO–CO2, may explain the observed propene/propane ratios, which can only be reached at reaction temperatures of 300–350°C. This low speed of reactions can also explain the observed disequilibrium of C1–C4 alkanes.  相似文献   

18.
Soil detachment in concentrated flow is due to the dislodging of soil particles from the soil matrix by surface runoff. Both aggregate stability and shear strength of the topsoil reflect the erosion resistance of soil to concentrated runoff, and are important input parameters in predicting soil detachment models. This study was conducted to develop a formula to predict soil detachment rate in concentrated flow by using the aggregate stability index (As), root density (Rd) and saturated soil strength (σs) in the subtropical Ultisols region of China. The detachment rates of undisturbed topsoil samples collected from eight cultivated soil plots were measured in a 3.8 m long, 0.2 m wide hydraulic flume under five different flow shear stresses (τ = 4.54, 9.38, 15.01, 17.49 and 22.54 Pa). The results indicated that the stability index (As) was well related with soil detachment rate, particularly for results obtained with high flow shear stress (22.54 Pa), and the stability index (As) has a good linear relationship with concentrated flow erodibility factors (Kc). There was a positive linear relationship between saturated soil strength (σs) and critical flow shear stress (τc) for different soils. A significant negative exponential relationship between erodibility factors (Kc) and root density (Rd) was detected. This study yielded two prediction equations that allowed comparison of their efficiency in assessing soil detachment rate in concentrated flow. The equation including the root density (Rd) may have a better correlation coefficient (R2 = 0.95). It was concluded that the formula based on the stability index (As), saturated soil strength (σs) and root density (Rd) has the potential to improve methodology for assessing soil detachment rate in concentrated flow for the subtropical Chinese Ultisols. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Continuous monitoring of distal gas emanations at Vulcano,southern Italy   总被引:1,自引:0,他引:1  
The increasing activity of Vulcano Island (Italy) since 1985 led to the initiation of continuous geochemical monitoring of the lateral soil gas emissions. On the basis both of their relative geochemical characteristics and of local considerations, three gaseous components were selected for monitoring, namely CO2, He and 222Rn. Monitoring has been performed by means of specific analysers. Gases extracted from a water well located at the foot of the active cone were selected for monitoring, on the basis of their geochemical and isotopic characters that indicate their genetic link with central high temperature fumarolic gases emitted at the crater. Very strong variations of gas composition can be observed within one day (from 1 to about 94% for CO2). Some variations display a daily character and can be correlated with that of atmospheric pressure. The three monitored gases are highly correlated, suggesting very high kinetics of gas transfer in the system. Because of these considerable variations of chemical composition, bulk concentrations obviously are not suitable for monitoring at Vulcano. However, the evolution with time of ratios such as 222Rn/CO2 and He/CO2 (the latter being corrected for atmospheric contamination) supplies numerical parameters that the expected to characterize the intensity of the degassing process. A new input of magmatic gases, that would lead to an increase in the 222Rn/CO2 and He/CO2 ratios, should therefore be detected by such a monitoring station.  相似文献   

20.
Intensive gas emanations occur throughout the island of Vulcano, Italy. Sharp fluctuations recorded in the crater gas composition suggest the presence of two separate volcanic reservoirs and continuous mixing with another source, “crustal” waters. This mixing differs between the beach and crater fumaroles. Gas samples from three crater fumaroles with temperatures ranging from 200 to 550 ° C were sampled repeatedly over a one year period. During the same interval of time, six samples from submarine and subaerial beach fumaroles and water well gases were also sampled. Gases from one crater fumarole (F5) showed variations of (3He/4He)fumarole to (3He/4He)air between 5 and 6 correlated with variations of several chemical species. High 3He/4He ratios for the beach fluids, similar to those of crater fluids, suggest the existence of a unique large magmatic reservoir at depth feeding both the crater and beach intermediate reservoirs. However, temporal changes clearly indicate variable degrees of fluids mixing, and the geographic distribution of the 3He/4He ratios as well as the chemical composition of the fluids suggest the existence between the magma reservoir and the surface of two intermediate different reservoirs, independently related to crater and to beach fumaroles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号