首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report here the electrical resistivity measurements on two natural zeolites–natrolite and scolecite (from the Killari borehole, Maharashtra, India) as a function of pressure up to 8 GPa at room temperature. High-pressure electrical resistivity studies on hydrous alumino-silicate minerals are very helpful in understanding the role of water in deep crustal conductivities obtained from geophysical models. The results obtained by magneto-telluric (MT) soundings and direct current resistivity surveys, along with the laboratory data on the electrical resistivity of minerals and rocks at high-pressure–temperature are used to determine the electrical conductivity distribution in continental lithosphere. The electrical resistivity of natural natrolite decreases continuously from 2.9 × 109 Ω cm at ambient condition to 7.64 × 102 Ω cm at 8 GPa, at room temperature. There is no pressure-induced first order structural phase transitions in natrolite, when it is compressed in non-penetrating pressure transmitting medium up to 8 GPa. On the other hand scolecite exhibits a pressure-induced transition, with a discontinuous decrease of the electrical resistivity from 2.6 × 106 to 4.79 × 105 Ω cm at 4.2 to 4.3 GPa. The observed phase transition in scolecite is found to be irreversible. Vibrational spectroscopic and X-ray diffraction studies confirm the amorphous nature of the high-pressure phase. The results of the present high-pressure studies on scolecite are in good agreement with the high-pressure Raman spectroscopic data on scolecite. The thermo gravimetric studies on the pressure-quenched samples show that the samples underwent a pressure-induced partial dehydration. Such a pressure-induced partial dehydration, which has been observed in natural scolecite could explain the presence of high conductive layers in the earth's deep-crust.  相似文献   

2.
Hazardous sinkholes started to appear in alluvial fans and unconsolidated sediments along the western Dead Sea coast in 1990. Since then hundreds of sinkholes have appeared from north to south along the shoreline. The Electrical Resistivity Tomography (ERT) method was used to achieve a better understanding of the subsurface geoelectric structure at the sinkhole development sites, taking into account that electric parameters (such as resistivity or conductivity) are very sensitive to formation properties and their variations in time. Fifteen image lines were surveyed at the Ein Gedi area during a period of active sinkhole development (in 2001–2002) over an area of 300 × 550 m2. Resistivity cross-sections and maps were constructed from 2-D linear surveys. The process of sinkhole formation in the surveyed area is located in a strip 50–70 m wide and 300–500 m long, extending approximately in a north–south direction. The sinkholes are arranged along a tortuous line within this strip. On resistivity maps and sections this U-shaped zone appears as an alternation of high resistivity anomalies of 350–1000 Ωm (at sinkhole group locations) with narrow background resistivity zones of 50–100 Ωm. The large size of resistivity anomalies (250 × 300 m2), which are considerably greater than those of the sinkholes, form one of the features of the sinkhole sites in the Ein Gedi area. The anomalies continue down to the water table or even deeper (maximum of 25–35 m depth). A low resistivity layer of 1–8 Ωm underlies them. The combined analysis of the image results and other geophysical data shows that high resistivity anomalies are associated with the decompaction of the soil mass at the sinkhole development sites and surrounding areas. Recent studies have shown that sinkholes in the Ein Gedi area are developing along the salt western edge located at a depth of 50 m. The subsurface high resistivity anomaly conforms to the sinkhole line (and salt boundary). They are presumably located above the great dissolution caverns at the salt edge. The heterogeneity of the resistivity structure within the high resistivity anomaly (seen in both lateral and vertical planes) confirms that a disintegration of internal formation structure takes place. Away from the sinkhole sites the subsurface resistivity distribution is homogeneous.  相似文献   

3.
Windsor–Essex County is a major cross-border truck and transportation route, with significant localized industrialization as well as rural and farming areas. Magnetic property measurements (in-field and laboratory susceptibility, frequency-dependent susceptibility, hysteresis properties, thermomagnetic and thermosusceptibility curves, anhysteretic and isothermal magnetizations) were made in order to determine the potential for using such variables to distinguish between natural and anthropogenic pollutants. In-field magnetic susceptibility measured on 324 soil sampling sites on a 0.5–2 km grid spacing through Windsor–Essex County ranged from 3.7 × 10− 6 to 305.2 × 10− 6 SI (average 36.2 ± 35.8 × 10− 6 SI), and showed that high magnetic susceptibility values were obtained on soil sampling sites in and around the cities/towns of Windsor, Harrow, Olinda and Oakland and near the beaches of Point Pelee National Park (PPNP) and Deerbrook, whereas lower susceptibility values were observed in near the towns of Lakeshore and Essex. On this grid spacing, Highway 401 (the major truck route) did not show anomalous susceptibility values; however, closer (1–3 m) sampling on other roads did show anomalously high values, suggesting that the coarser grid spacing may have missed anomalies. Laboratory measurements indicated that the dominant magnetic mineral in the Windsor–Essex County soils is magnetite; however, the grain size is variable. Pseudo-single domain (PSD)–multidomain (MD) magnetite is generally found on beaches and in PPNP, whereas single domain (SD)–PSD magnetite has been found near the City of Windsor and other towns. While certain correlations exist between some anthropogenic activities and the measured magnetic susceptibility and magnetic property values, no overall correlation can be made. A variety of geologic and anthropogenic factors must be considered when interpreting the origin of the magnetic signal in a particular area.  相似文献   

4.
Basaltic rocks with low K, U and Th contents dominate the entire Volcanic Complex of the Doupovské hory Mts. Significant potassium anomaly exceeding 1.5 atomic wt.% of potassium over an area of 4 × 8 km and 2 atomic wt.% of potassium over an area of 2 × 6 km was defined by airborne gamma-ray spectrometry above the central part of the Doupovské hory Volcanic Complex. The following detailed field study, supported by field and laboratory gamma-spectrometry measurements and geochemical analyses of rock samples, resulted in discovery of a swarm of potassium-rich trachytic dykes. The existence of such highly-differentiated rocks in the volcanic complex was unknown till present. These dykes are commonly less than 1 m wide, but their potassium content varies between 4 and 8 atomic wt.%. Owing to this high-K composition and relative abundance of dykes, the dyke rocks significantly modify the regional pattern of gamma-spectrometry data. The potassium anomaly cannot be explained by the presence of Flurbühl intrusive body dominated by ijolites and essexites, as all these rocks are poor in K, with potassium typically not exceeding 1.5 wt.%. On the other hand, much more extensive intermediate trachybasaltic lavas with K content varying within the range 1.8–3 wt.% cause only minor or undetectable anomalies.  相似文献   

5.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

6.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   

7.
Although subducting slabs undergo a bending deformation that resists tectonic plate motions, the magnitude of this resistance is not known because of poor constraints on slab strength. However, because slab bending slows the relatively rapid motions of oceanic plates, observed plate motions constrain the importance of bending. We estimated the slab pull force and the bending resistance globally for 207 subduction zone transects using new measurements of the bending curvature determined from slab seismicity. Predicting plate motions using a global mantle flow model, we constrain the viscosity of the bending slab to be at most ~ 300 times more viscous than the upper mantle; stronger slabs are intolerably slowed by the bending deformation. Weaker slabs, however, cannot transmit a pull force sufficient to explain rapid trenchward plate motions unless slabs stretch faster than seismically observed rates of ~ 10− 15 s− 1. The constrained bending viscosity (~ 2 × 1023 Pa s) is larger than previous estimates that yielded similar or larger bending resistance (here ~ 25% of forces). This apparent discrepancy occurs because slabs bend more gently than previously thought, with an average radius of curvature of 390 km that permits subduction of strong slabs. This gentle bending may ultimately permit plate tectonics on Earth.  相似文献   

8.
The subsurface spatial variation in clay soils, such as thin-layered sand seams, affects the mechanical strength and electrical resistivity. The objective of this study is the development and application of cone resistivity penetrometer (CRP), which measures the cone tip resistance, sleeve friction, and electrical resistivity to evaluate the subsurface spatial variability. The electrical resistivity is measured at the cone tip to increase its resolution. Two outer diameters of the cone resistivity penetrometers (CRPs) are developed: D=10 mm CRP with a projected area of 0.78 cm2 and D=15 mm CRP with a projected area of 1.76 cm2. The cone tip resistance is effectively separated using a friction sleeve. Strain gauges are used to measure the mechanical strength, and coaxial type electrodes monitor the electrical resistivity. The application tests in the laboratory are conducted using layered soils and saturated sands. In addition, the penetration tests in the field are carried out and compared with the standard piezocone test. The penetration tests show that the soil layers and the density changes are clearly detected by the electrical resistivity and mechanical strength. Field tests show that CRP clearly evaluates the subsurface profile. This study suggests that CRP may be a useful technique for the evaluation of subsurface spatial variability during penetration testing.  相似文献   

9.
Water is a dominant component of volcanic clouds and has fundamental control on very fine particle deposition. Particle size characteristics of distal tephra-fall (100s km from source volcano) have a higher proportion of very fine particles compared to predictions based on single particle settling rates. In this study, sedimentological analyses of fallout from for the 18 August and 16–17 September 1992 eruptions of Crater Peak, Alaska, are combined with satellite observations, and cloud trajectory and microphysics modeling to investigate meteorological influences on particle sedimentation. Total grain size distributions of tephra fallout were reconstructed for both Crater Peak eruptions and indicate a predominance of fine particles < 125 μm. Polymodal analysis of the deposits has identified a particle subpopulation with mode ~ 15–18 μm involved in particle aggregation. Accounting for the magmatic water source only, calculated ice water content of the 3.7 hour old September 1992 Spurr cloud was ~ 4.5 × 10− 2 g m− 3 (based on an estimated cloud thickness of ~ 1000 m from trajectory modeling). Hydrometeor formation on particles in the volcanic cloud and subsequent sublimation may induce a cloud base instability that leads to rapid bulk (en masse) sedimentation of very fine particles through a mammatus-like mechanism.  相似文献   

10.
Hidden beneath the ~ 2 km thick low-velocity volcaniclastics on the western margin of the Central Volcanic Region, North Island, New Zealand, are two structures that represent the early history of volcanic activity in a continental back-arc. These ~ 20 × 20 km structures, at Tokoroa and Mangakino, form an adjacent gravity high and low, respectively. Interpretations from seismic refraction arrivals and gravity modelling indicate the − 65 mgal Mangakino residual gravity anomaly can be modelled, in part, by two low-density bodies that reach depths of ~ 6.5 km, whereas the Tokoroa gravity anomaly is due to a higher density rock coming, at most, to within ~ 650 m of the surface. The Mangakino anomaly is interpreted to be due to the remnants of magma chambers that fed large ignimbrite eruptions from about 1.2 Ma. An andesite volcano or complex volcanic structure is the preferred interpretation for the Tokoroa gravity high. The size of the putative volcanic structure is comparable to the presently active Tongariro Volcanic Complex in the centre of North Island.  相似文献   

11.
Elastic and electromagnetic waves are commonly used to investigate various soil characteristics. The goal of this study is to estimate the elastic moduli and the void ratio based on both the compressional and shear wave velocities, and the electrical resistivity measured by field velocity resistivity probe (FVRP). The compressional and shear waves are measured by piezoelectric disk elements and bender elements installed at the end of the FVRP frame tip. The electrical resistivity is determined by the electrical resistivity probe installed at the tip of the FVRP frame. The FVRP tests are carried out in a clay–sand mixture prepared in a calibration chamber and in silty sand to silty clay soils in the field. The elastic waves and electrical resistivity are measured at every 1 cm. The field tests are carried out at a depth of 6–20 m, at 10 cm intervals, at the Southern coastal area of the Korean peninsula. The measured data are converted into the constraint and shear moduli based on the elastic waves. Void ratios are evaluated based on the elastic wave velocities and the electrical resistivity, and these void ratios match the volumetric void ratio well. This study suggests that the FVRP may effectively determine the elastic moduli and void ratio.  相似文献   

12.
Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75–55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship between the resistive particles embedded within a conductive matrix depends on the connectivity of the matrix particles.  相似文献   

13.
Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 × 108. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol s− 1 in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol s− 1. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23 yr− 1, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2 s− 1. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.  相似文献   

14.
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 × 3 × 4 factorial design (i.e. two temperatures: 25 and 35 °C; three salinities: 15.0‰, 34.5‰ and 45.0‰; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 μg l−1 respectively (at 25 °C; 34.5‰) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using ‘concentration’ as the covariate and both ‘temperature’ and ‘salinity’ as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.  相似文献   

15.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

16.
As basic research for the effect of heavy oil on the fish immune system, in this study, the number of leukocyte was counted in Japanese flounder Paralichthys olivaceus, after exposure to heavy oil at a concentration of 30 g/8 L for 3 days. To compare the numbers of bacteria in the skin mucus between oil-exposed and control fish, viable bacteria were enumerated by counting colony forming unit (CFU). Compared with 5.79 ± 1.88 × 107 leukocytes/mL in the controls, the exposed fish demonstrated higher counts, averaging 1.45 ± 0.45 × 108 cells/mL. The bacterial numbers of control fish were 4.27 ± 3.68 × 104 CFU/g, whereas they were 4.58 ± 1.63 × 105 CFU/g in the exposed fish. The results suggest that immune suppression of the fish occurred due to heavy oil stressor, and bacteria could invade in the mucus, resulting in the increasing leukocyte number to prevent infectious disease.  相似文献   

17.
Magnetic Resonance Sounding (MRS) is nowadays accepted as a new geophysical method that can be used for a reliable determination of the ground water content distribution in the top 150 m. A great effort has also been made in MRS development to deduce the hydraulic transmissivity, based on empiric relationships of the permeability with a factor F which is calculated with NMR parameters measured at laboratory scale. To use this relationship under field conditions a calibration coefficient CT = Tpt / F has to be previously established, which demands the knowledge of the transmissivity Tpt evaluated in the pumping test. The transmissivity can then be calculated at any other site of the same aquifer using the relation Tmrs = CTF. The CT values reported suggest a certain relationship with the lithology, but with a great dispersion and contradictory results. MRS surveys carried out in alluvial aquifers in Spain have shown that the value of CT evaluated at one site may not be valid at another place of the same aquifer, because of the great heterogeneity of this kind of geological environment. The demand of a pumping test at each site where a MRS is measured invalidates the method actually used for MRS transmissivity evaluation. More than 50 MRS have been used to propose a new methodology. The aquifers visited cover a great range of transmissivities (from 2 × 10− 6 to 9 × 10− 3 m2/s). The MRS signal amplitude varies between 20 and 1400 nV, the signal/noise ratio is in the range from 0.6 to 42, and the value of the decay time constant varies from 200 to 800 ms. It has been demonstrated that when the transmissivity increases, the value of F decreases, and CT increases, except for certain groups of MRS taken at the same aquifer or part of one aquifer, for which F increases with Tpt, keeping CT constant. A function CT(F) of the type CT = mF− n has been obtained that allows the transmissivity evaluation without the need of Tpt. Considering that both values of transmissivity, Tpt and Tmrs, are subjected to deviations due to the experimental errors as well as due to evaluation errors, the prediction achieved by the proposed equation is rather good. To perform a better evaluation of the values of the coefficients m and n it is necessary to have a greater number of MR soundings of good quality and with a trustworthy inversion at locations where a really comparable and good performed pumping test is available, covering a sufficient range of transmissivities. Though the data we have used do not always fulfil these conditions, the result is promising. Once a trustable function is available, the forecast of the transmissivity using MRS will not need the existence of any pumping test in the area. The general extension of this methodology demands the availability of MRS taken at all kinds of geological and hydrogeological environments, which is impossible without the existence of a universal MRS data base.  相似文献   

18.
In this paper we analyze the onsite characterization of a geosynthetic clay liner (GCL) that serves to ensure the impermeability of a landfill cap by DC electrical methods. The imaging of the GCL geoelectrical properties is a challenging problem because it is a very thin (between 4 and 7 mm thick) and resistive layer (from 100,000 to 2,000,000 Ω·m) depending on meteorological conditions and aging. We compare results obtained using electrical resistivity tomography (ERT) using two different kinds of arrays (dipole–dipole DD and Wenner–Schlumberger) on an experimental site with engineered defects. To confirm these results and to find the real onsite GCL resistivity we have performed sampling of the posterior distribution of this parameter using vertical electrical sounding (VES) inversions. Different VES methods were extracted from ERT with DD array and converted into a Schlumberger array.As a main conclusion the dipole–dipole array provides a better resistivity resolution of the defects than the Wenner–Schlumberger array. On ERT images, the defect detection seems to be impossible if the GCL has very high resistivity, as it happened when it was put in place. Taking into account the equivalence rules, the inversions are in both cases (ERT and VES) compatible. The GCL resistivity estimated from PSO (particle swarm optimization) varies from 3.0 105 to 1.106 Ω·m depending on saturation conditions during the twenty first months of its placing. Then, the resistivity dropped to 4.104–9.104 Ω·m, indicating a probable chemical damage of the GCL due to aging. Finally the fact that the VES inversions are solved via PSO sampling allows for the detection of a very thin and resistive layer and opens the possibility of performing micro VES surveys along the landfill to detect possible GCL defects.  相似文献   

19.
The precise knowledge of the initial 26Al/27Al ratio [(26Al/27Al)0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium–aluminum-rich inclusions (CAIs) as the “time zero” age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al–26Mg fossil isochron with an (26Al/27Al)0 of (5.23 ± 0.13) × 10− 5. Internal mineral isochrons obtained for three of these CAIs (A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with (26Al/27Al)0 = (4.96 ± 0.25) × 10− 5, anchored to our precisely determined absolute 207Pb–206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the “canonical” (26Al/27Al)0 of 5 × 10− 5 for the early Solar System. The uncertainty in (26Al/27Al)0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al–26Mg and U–Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the “supra-canonical” 26Al/27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/27Al ratio in the CV CAIs may have resulted from post-crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS.The radiogenic 208Pb/206Pb ratio obtained as a by-product from the Pb–Pb age dating is used to estimate time-integrated 232Th/238U ratio (κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.  相似文献   

20.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号