首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
New noble gas data of ultramafic xenoliths from Réunion Island, Indian Ocean, further constrain the characteristics of primordial and radiogenic noble gases in Earth’s mantle plume reservoirs. The mantle source excess of nucleogenic 21Ne is significantly higher than for the Hawaiian and Icelandic plume reservoirs, similar to excess of radiogenic 4He. 40Ar/36Ar of the Réunion mantle source can be constrained to range between 8000 and 12 000, significant 129Xe and fission Xe excess are present. Regarding the relative contribution of primordial and radiogenic rare gas nuclides, the Réunion mantle source is intermediate between Loihi- and MORB-type reservoirs. This confirms the compositional diversity of plume sources recognized in other radioisotope systematics. Another major result of this study is the identification of the same basic primordial component previously found for the Hawaiian and Icelandic mantle plumes and the MORB reservoir. It is a hybrid of solar-type He and Ne, and ‘atmosphere-like’ or ‘planetary’ Ar, Kr, Xe (Science 288 (2000) 1036). 20Ne/22Ne ratios extend to maximum values close to 12.5 (Ne-B), which is the typical signature of solar neon implanted as solar corpuscular radiation. This suggests that Earth’s solar-type noble gas inventory was acquired by small (less than km-sized) precursor planetesimals that were irradiated by an active early sun in the accretion disk after nebular gas dissipation, or, alternatively, that planetesimals incorporated constituents irradiated in transparent regions of the solar nebula. Previously, such an early irradiation scenario was suggested for carbonaceous chondrites which follow common volatile depletion trends in the sequence CI–CM–CV–Earth. In turn, CV chondrites closely match Earth’s mantle composition in 20Ne/22Ne, 36Ar/22Ne and 36Ar/38Ar. This indicates that mantle Ar could well be a planetary component inherited from precursor planetesimals. However, a corresponding conclusion for mantle Kr and Xe is less convincing yet, but this may be just due to the lack of appropriate ‘meteoritic’ building blocks matching terrestrial composition. Alternatively, heavy noble gases in Earth’s mantle could be due to admixing of severely fractionated air, but this effect must have affected all mantle sources to a very similar extent, e.g. by global subduction before the last homogenization of the mantle reservoirs.  相似文献   

2.
In an attempt to constrain the origin of polycrystalline diamond, combined analyses of rare gases and carbon and nitrogen isotopes were performed on six such diamonds from Orapa (Botswana). Helium shows radiogenic isotopic ratios of R/Ra = 0.14–1.29, while the neon ratios (21Ne/22Ne of up to 0.0534) reflect a component from mantle, nucleogenic and atmospheric sources. 40Ar/36Ar ratios of between 477 and 6056 are consistent with this interpretation. The (129Xe/130Xe) isotopic ratios range between 6.54 and 6.91 and the lower values indicate an atmospheric component. The He, Ne, Ar and Xe isotopic compositions and the Xe isotopic pattern are clear evidence for a mantle component rather than a crustal one in the source of the polycrystalline diamonds from Orapa. The δ13C and δ15N isotopic values of − 1.04 to − 9.79‰ and + 4.5 to + 15.5‰ respectively, lie within the range of values obtained from the monocrystalline diamonds at that mine. Additionally, this work reveals that polycrystalline diamonds may not be the most appropriate samples to study if the aim is to consider the compositional evolution of rare gases through time. Our data shows that after crystallization, the polycrystalline diamonds undergo both gas loss (that is more significant for the lighter rare gases such as He and Ne) and secondary processes (such as radiogenic, nucleogenic and fissiogenic, as well as atmospheric contamination). Finally, if polycrystalline diamonds sampled an old mantle (1–3.2 Ga), the determined Xe isotopic signatures, which are similar to present MORB mantle – no fissiogenic Xe from fission of 238U being detectable – imply either that Xe isotopic ratios have not evolved within the convective mantle since diamond crystallization, or that these diamonds are actually much younger.  相似文献   

3.
Fresh basalt glasses from the North Chile Ridge (NCR) in the southeastern Pacific have Ne isotopic compositions distinctly different from typical mid-ocean ridge basalts (MORB). In a three-isotope plot of 20Ne/22Ne vs. 21Ne/22Ne, the NCR data define a correlation line with a slope smaller than that of the MORB correlation line, i.e. their Ne composition is more nucleogenic than that of MORB. 3He/4He ratios are slightly lower than the MORB average, whereas in a few stepwise heating fractions very high 40Ar/36Ar ratios up to 28,000 are found. One model to explain the data assumes contamination of the NCR mantle source by material from the continental or oceanic crust, but in addition to difficulties with quantitatively reconciling the noble gas patterns with such a model it seems unable to account for some geochemical characteristics of NCR basalts reported earlier [Bach et al., Earth Planet. Sci. Lett. 142 (1996) 223–240], such as depletions in highly incompatible elements and unradiogenic Sr isotope compositions. Therefore we favor the scenario of a mantle source which was depleted and degassed previously, possibly as a residue from mantle melting beneath the southern East Pacific Rise that was transported to the NCR and melted again. The time during which such a depleted reservoir would have to be separated from the MORB mantle is estimated at 10–100 Ma based on U/Th–Ne systematics, in reasonable agreement with the time scale deduced from the formation history of the NCR and the temporal evolution of the southeast Pacific.  相似文献   

4.
YASUO  IKEDA  KEISUKE  NAGAO  ROBERT J.  STERN  MAKOTO  YUASA & SALLY  NEWMAN 《Island Arc》1998,7(3):471-478
Noble gas concentrations and isotopic compositions have been measured in eight samples of pillow basalt glasses collected from seven different localities along 250 km of the Mariana Trough spreading and rifting axis. The samples have uniform and mid-ocean ridge basalt (MORB)-like 3He/4He values of 9–12 × 10–6 (6.4–8.6 times atmospheric) despite large variations in 4He. Concentrations of the noble gases Ne, Ar, Kr, and Xe show much smaller variations between samples, but larger variations in isotopic compositions of Ne, Ar, and Xe. Excess radiogenic 21Ne is observed in some samples. 40Ar/36Ar varies widely (atmospheric to 1880). Kr is atmospheric in composition for all samples. Some samples show a clear excess 129Xe, which is a well-known MORB signature. Isotopic compositions of the heavier noble gases (Ar, Kr, and Xe) in some samples, however, show more atmospheric components. These data reflect the interaction of a MORB-like magma with an atmospheric component such as seawater or of a depleted mantle source with a water-rich component that was probably derived from the subducting slab.  相似文献   

5.
We report new helium isotope results for 49 basalt glass samples from the Mid-Atlantic Ridge between 1°N and 47°S.3He/4He in South Atlantic mid-ocean ridge basalts (MORB) varies between 6.5 and 9.0 RA (RA is the atmospheric ratio of1.39 × 10−6), encompassing the range of previously reported values for MORB erupted away from high3He/4He hotspots such as Iceland. He, Sr and Pb isotopes show systematic relationships along the ridge axis. The ridge axis is segmented with respect to geochemical variations, and local spike-like anomalies in3He/4He, Pb and Sr isotopes, and trace element ratios such as(La/Sm)N are prevalent at the latitudes of the islands of St. Helena, Tristan da Cunha and Gough to the east of the ridge. The isotope systematics are consistent with injection beneath the ridge of mantle “blobs” enriched in radiogenic He, Pb and Sr, derived from off-axis hotspot sources. The variability in3He/4He along the ridge can be used to refine the hotspot source-migrating-ridge sink model.

MORB from the 2–7°S segment are systematically the least radiogenic samples found along the mid-ocean ridge system to date. Here the depleted mantle source is characterized by87Sr/86Sr of 0.7022, Pb isotopes close to the geochron and with206Pb/204Pb of 17.7, and3He/4He of 8.6–8.9 RA. The “background contamination” of the subridge mantle, by radiogenic helium derived from off-ridge hotspots, displays a maximum between 20 and 24°S. The HePb and HeSr isotope relations along the ridge indicate that the3He/4He ratios are lower for the hotspot sources of St. Helena, Tristan da Cunha and Gough than for the MORB source, consistent with direct measurements of3He/4He ratios in the island lavas. Details of the HeSrPb isotope systematics between 12 and 22°S are consistent with early, widespread dispersion of the St. Helena plume into the asthenosphere, probably during flattening of the plume head beneath the thick lithosphere prior to continental breakup. The geographical variation in theHe/Pbratio deduced from the isotope systematics suggests only minor degassing of the plume during this stage. Subsequently, it appears that the plume component reaching the mid-Atlantic ridge was partially outgassed of He during off-ridge hotspot volcanism and related melting activity.

Overall, the similar behavior of He and Pb isotopes along the ridge indicates that the respective mantle sources have evolved under conditions which produced related He and Pb isotope variations.  相似文献   


6.
The large differences in He and Ar diffusivities in silicate minerals could result in fractionation of the He/Ar ratio during melting of the mantle, producing He/Ar ratios in the primary mantle melts that are higher than those of the bulk mantle. Modeling noble gas diffusion out of the bulk mantle into fast diffusion pathways (such as fractures or melt channels) suggests that significant (order of magnitude) He/Ar fractionation will occur if the fast diffusion channels are spaced several meters apart and the noble gas residence in these diffusion channels is of the order days to weeks. In addition, the 15% difference in 3He and 4He diffusivities could also produce isotopic fractionation between the melt and its solid source. Modeling the behavior of He and Ar during melting shows that small increases (few %) in 3He/4He should be correlated with larger variations (factor of 5) in 4He/40Ar. However, in order to test this hypothesis the effects of subsequent He–Ar fractionation that occur during degassing have to be corrected. I describe a scheme that can separate He/Ar variations in the primary melt from overprinted fractionation during magmatic degassing. Using the degassing-corrected data, there is a correlation between the primary melt’s 4He/40Ar and 3He/4He in mid-ocean ridge basalts (MORBs). The slope of the correlation is consistent with the models of preferential diffusion of 3He relative to 4He and of 4He relative to 40Ar from the solid mantle into the melt. Diffusive fractionation of noble gases during melting of the mantle can also account for low 4He/40Ar ratios commonly found in residual mantle xenoliths: preferential diffusion of He relative to Ar will produce some regions of the mantle with low 4He/40Ar, the complement of the high 4He/40Ar ratios in basalts. Diffusive fractionation cannot, however, account for differences between the He and Ne isotopic compositions of MORBs compared with ocean island basalts (OIBs); not only are the extremely high 3He/4He ratios of OIBs (up to 50 Ra) difficult to produce at reasonable mantle time and lengthscales, but also the Ne isotopic compositions of MORBs and OIBs do not lie on a single mass fractionation line, therefore cannot result from diffusive fractionation of a single mantle Ne source. If preferential diffusion of He from the solid mantle into primary melts is a significant process during generation of MORBs, then it is difficult to constrain the He concentration of the mantle: He concentrations in basalts and the He flux to the ocean essentially result from extraction of He from a larger (and unknown) volume of mantle than that that produced the basalts themselves. The He concentration of the mantle cannot be constrained until more accurate estimates of the diffusion contribution are available.  相似文献   

7.
Noble gas concentrations and isotopic compositions have been determined for four submarine volcanic glasses from the Valu Fa Ridge (VFR) in the southern Lau Basin. The samples are the least differentiated ones from this area, and they display enrichments in fluid-mobile elements similar to the nearby island arc. 3He/4He ratios are slightly below average MORB (6.8–7.8 times atmospheric), whereas Ne, Ar, Kr, and Xe have isotopic compositions very similar to air. Together with previously published data from the Valu Fa Ridge and other spreading segments in the Lau Basin, our data show a systematic latitudinal variation of increasing Ne, Ar, Kr, and Xe abundances from north to south as well as Ne and Ar isotopic compositions changing from MORB-like to atmosphere-like in the same direction. Moreover, isotopic compositions and noble gas abundances of the lavas correlate strongly with Ba/Nb ratios and H2O concentrations. Based on these observations and mass balance arguments, we propose that the atmospheric noble gases come from the subducting oceanic crust and are not due to shallow contamination with air dissolved in seawater or assimilation of old crust. Our data suggest that the noble gases released from the subducting slab are atmospheric and thus contain little or no solar He and Ne. In addition to the fact that ratios of He to heavy noble gases are small in aged ocean crust, He has possibly fractionated from the other noble gases due to its higher diffusivity, and thus He transport from the subducting slab into the mantle wedge is probably insignificant. We propose that the 3He/4He ratios lower than MORB observed in the VFR lavas result from radiogenic ingrowth of He in a highly depleted, and hence degassed, mantle wedge after the enrichment of U and Th released from the downgoing slab.  相似文献   

8.
Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii   总被引:3,自引:0,他引:3  
We report new noble gas fusion and crushing data for six pillow rim glasses, recovered between 3 and 5 km water depth on the south rift zone of Loihi Seamount, Hawaii. Helium abundances of the glasses vary from 0.3 to 2.3 μcc/g, with 4He/3He ratios between 30000 and 27000 (24–27 RA), similar to previously reported values. The neon data form a correlation line which is similar to the Loihi-Kilauea line reported by Honda et al. [1], but extends to much higher ratios, up to 12.9 and 0.0382 for the 20Ne/22Ne and 21Ne/22Ne ratios, respectively. This provides conclusive evidence for the suggestion that the Hawaiian plume, thought to originate in the lower mantle, has a solar-like 20Ne/22Ne composition [1], but a slightly higher 21Ne/22Ne ratio. 40Ar/36Ar ratios of the deep rift-zone glasses are as high as 2600, and show a positive correlation with neon isotopic ratios. In contrast to neon and argon, all xenon isotopic compositions are isotopically indistinguishable from air, which either suggests preferential atmospheric contamination of xenon, or could indicate an atmospheric xenon isotopic composition for the lower mantle.  相似文献   

9.
Helium, neon, and argon isotopic compositions were measured in two flows of the Columbia River flood basalt. The Imnaha Basalt has a 3He/4He ratio of 11.4 times atmospheric and 20Ne/22Ne and 21Ne/22Ne ratios characteristic of a plume component. The measured 3He/4He is a lower limit, due to possible preferential 3He loss and/or addition of radiogenic 4He. A Wanapum Basalt flow, erupted approximately 2 Ma later in the waning stages of volcanism, has more MORB-like noble gases. The He, Nd and Sr isotopic compositions of these lavas suggest that the Columbia River basalts were derived from the Yellowstone plume head which contained both ‘high-helium’ plume material and entrained depleted mantle. As the eruptions progressed the plume component in the melting region was gradually diluted or replaced.  相似文献   

10.
An evaluation of the precision and resolution of the unspiked K–Ar dating method is presented with particular regard to the statistical significance of ages that are measured near or at the detection limit of the technique. Near-zero (historical) ages can be measured by the unspiked K–Ar technique with a precision that is essentially controlled by the precision with which the 40Ar/36Ar of the sample can be resolved from the present-day atmospheric value of 295.5. The best analytical precision on the isotopic ratio is ±0.05% (1σ) by this technique, which currently limits the lower detection limit of unspiked K–Ar ages to samples featuring at least 0.14% of radiogenic 40Ar. The corresponding youngest resolvable K–Ar age depends on the K content and atmospheric contamination of the sample. Total-fusion analysis of high-K refractory minerals like sanidine is not practicable via K–Ar, and the lowest resolvable age for medium-K samples more amenable to complete fusion is around 1.5 ka (on a single-run basis). It is argued that near-zero age measured with a probability density straddling or narrowing the time-origin cannot be handled without accounting for the non-negativity constraint imposed by the physical requirement of a positive age. The pertinent equations are derived both for the single-run case and for the case of independent replicates made on a single sample. We show that pooled K–Ar replicates can theoretically reduce the nominal uncertainty of individual unspiked ages (typically ±1.5 ka, 2σ) to a value that is close to the smallest 40Ar/39Ar isochron age uncertainty achievable on sanidine in the 0–2 ka range (±0.2 ka, 2σ). However, this performance is obtained at the cost of prohibitively large-sample statistics (n≥15) for medium-K feldspars datable via K–Ar. Coupled with the inability of the K–Ar approach to obviate the problems of excess/fractionated 40Ar and/or xenocrystic contamination, this makes the 40Ar/39Ar technique the method of choice for dating historical events by the K–Ar scheme.  相似文献   

11.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

12.
Noble gases were extracted in steps from grain size fractions of microdiamonds ( < 100 μm) from the Kokchetav Massif, Northern Kazakhstan, by pyrolysis and combustion. The concentration of 4He in the diamonds proper (liberated by combustion) shows a 1/r dependence on grain size. For grain diameters > 15 μm the concentration also decreases with the combustion step. Both results are clear evidence that 4He has been implanted into the diamonds from -decaying elements in the surrounding matrix. The saturation concentration of 4He(5.6 × 10−4 cm3 STP/g) is among the very highest observed in any terrestrial diamonds. Fission xenon from the spontaneous fission of 238U accompanies the radiogenic 4He; the 136Xef/4He ratio of (2.5 ± 0.3) × 10−9 agrees well with the production ratio of 2.3 × 10−9 expected in a reservoir where Th/U 3.3. Radiogenic 40Ar is predominantly ( > 90%) set free upon combustion; it also resides in the diamonds and appears to have been incorporated into the diamonds upon their formation.

3He, on the other hand is mainly released during pyrolysis and hence is apparently carried by ‘contaminants’. The concentration in the diamonds proper is of the order of 4 × 10−12 cm3 STP/g, with a 3He/4He ratio of 1 × 10−8. Excess 21Ne, similarly, appears to be present in contaminants as well as in diamonds proper. These two nuclides in the contaminants must have a nucleogenic origin, but it is difficult to explain their high concentrations.  相似文献   


13.
Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal–compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063–0.7055) and εNd increases (− 3.4 to − 1.1). 187Os/188Os is highly radiogenic (0.20–0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105–106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100–102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal–compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.  相似文献   

14.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   

15.
The Earth's mantle contains a mixture of primordial noble gases, in particular solar-type helium and neon, and radiogenic rare gases from long-lived U, 232Th, 40K and short-lived 129I, 244Pu. Rocks derived from deep mantle plume magmatism like on Hawaii or Iceland contain a higher proportion of primordial nuclides than rocks from the shallow upper mantle, e.g. mid ocean ridge basalts (MORBs). This is widely regarded as the key evidence for survival of a less degassed and more “primitive” reservoir within the lower mantle. We present an evaluation of noble gas composition showing the shallow mantle to have about five times more radiogenic (relative to primordial) isotopes than Hawaii/Iceland-type plume reservoirs, no matter if short- or long-lived decay systems are considered. This fundamental property suggests that both MORB and plume-type noble gases are mixtures of: (1) a homogeneous radiogenic component present throughout most of the mantle and (2) a uniform primordial noble gas component with very minor radiogenic ingrowth. This conclusion depends crucially on the observed excess of radiogenic Xe in plume-derived rocks, and is only valid if this Xe excess is inherent to the plume sources.Possible sources of the primordial component of mantle plume reservoirs—and possibly also the MORB mantle—could be mantle reservoirs that remained relatively isolated over most of Earth's history (“blobs”, a deep abyssal layer, or the D” layer), but these need a considerable concentration of primordial gases to compensate U, Th, K decay over 4.5 Ga. Earth's core is evaluated as an alternative viable source feeding primordial nuclides into mantle reservoirs: even low metal-silicate partitioning coefficients allow sufficient primordial noble gases to be incorporated into the early forming core, as the undifferentiated proto-Earth was initially gas-rich. Massive mantle degassing soon after core formation then provides the opposite concentration gradient that allows primordial noble gases reentering the mantle at the core-mantle boundary, probably via partial mantle melts. Another possible source of primordial noble gases in Earth's mantle are subducted sediments containing extraterrestrial dust with solar He and Ne, but this supply mechanism crucially depends on largely unconstrained parameters. The latter two scenarios do not require the preservation of a “primitive” mantle reservoir over 4.5 Ga, and can potentially better reconcile increasing geochemical evidence of recycled lithospheric components in mantle plumes and seismic evidence for whole mantle convection.  相似文献   

16.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   

17.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


18.
Noble gas elemental and isotopic abundances have been analysed in eight samples of youthful basaltic glass dredged from three different locations within the Lau Backarc Basin: (1) the King's Triple Junction, (2) the Central Lau Spreading Centre at 18°S and (3) the Eastern Lau Spreading Centre at 19°S. Samples from the Lau central and eastern spreading centres have MORB-like helium isotopic ratios of approximately 1.2 × 10−5 (8.5 R/RA). In contrast, the samples from the King's Triple Junction yield helium isotopic ratios averaging 9.4 (±0.8) × 10−6 (6.7 ± 0.6 R/RA), systematically lower than the MORB-like value, which may be reflecting the addition of radiogenic 4He released from the descending slab. Neon isotopic ratios are enriched in 20Ne and 21Ne with respect to atmospheric ratios by as much as 23% and 62% respectively. These observations further confirm that non-atmospheric neon is a common characteristic of samples derived from the mantle. The helium and neon isotopic signatures in the samples can be explained by mixing of a primordial solar component, radiogenic and nucleogenic components produced by radioactive processes inside the Earth, and an atmospheric component. This reconnaissance survey of noble gases in a backarc basin indicates that current volcanism is dominated by magmas from the mantle wedge, a source similar to that from which MORBs are derived. The heavier noble gases (argon, krypton and xenon), however, show more atmosphere-like compositions, either indicating strong interaction of the magmas with the atmosphere or the presence of a recycled component derived from the underlying subducting slab.  相似文献   

19.
This study presents new major and trace element, mineral, and Sr, Nd, and noble gas isotope geochemical analyses of basalts, gabbro, and clinopyroxenite from the Mariana Arc (Central Islands and Southern Seamount provinces) including the forearc, and the Mariana Trough (Central Graben and Spreading Ridge). Mantle source compositions beneath the Mariana Arc and the Mariana Trough indicate a mantle source that is depleted in high field strength elements relative to MORB (mid‐oceanic ridge basalt). Samples from the Mariana Arc, characterized by high ratios of Ba/Th, U/Th, 84Kr/4He and 132Xe/4He, are explained by addition of fluid from the subducted slab to the mantle wedge. Correlations of noble gas data, as well as large ion lithophile elements, indicate that heavy noble gases (Ar, Kr, and Xe) provide evidence for fluid fluxing into the mantle wedge. On the other hand, major elements and Sr, Nd, He, and Ne isotopic data of basalts from the Mariana Trough are geochemically indistinguishable from MORB. Correlations of 3He/4He and 40Ar/36Ar in the Mariana Trough samples are explained by mixing between MORB and atmosphere. One sample from the Central Graben indicates extreme enrichment in 20Ne/22Ne and 21Ne/22Ne, suggesting incorporation of solar‐type Ne in the magma source. Excess 129Xe is also observed in this sample suggesting primordial noble gases in the mantle source. The Mariana Trough basalts indicate that both fluid and sediment components contributed to the basalts, with slab‐derived fluids dominating beneath the Spreading Ridge, and that sediment melts, characterized by high La/Sm and relatively low U/Th and Zr/Nb, dominate in the source region of basalts from the Central Graben.  相似文献   

20.
Picrites from the 61 million year old Vaigat Formation of the Nuussuaq Peninsula in West Greenland have 3He/4He ratios trapped in olivine phenocrysts which range up to 30 times the atmospheric ratio. These high values, measured during gas extraction by crushing in vacuum, are similar to the highest magmatic 3He/4He ratios found in young terrestrial volcanic rocks. By analogy with young basalts, in which crushing selectively extracts magmatic helium, any significant cosmogenic 3He appears to be absent in these picrites. Additional evidence for the absence of cosmogenic helium is provided by fusion results on the crushed olivine powders and by a single stepwise crushing experiment, in which only magmatic and radiogenic helium components are resolvable. The West Greenland picrites have Pb, Nd and Sr isotope compositions which overlap those found in picrites from Iceland and in basalts from Loihi Seamount, localities which today also have high 3He/4He ratios. Isotopic variations in He, Pb, Nd and Sr for the West Greenland picrites are interpreted to largely result from interaction of the early Iceland mantle plume with the upper mantle during plume ascent and dispersion beneath the continental lithosphere. The presence of high 3He/4He ratios in West Greenland, and the onset of magmatism across the North Atlantic Volcanic Province near 62 Ma, supports the hypothesis for very rapid dispersion (>1 m/year) of mantle plume head material during the earliest stages of plume impact, as predicted in recent numerical simulations of plume behavior during thermal mantle convection with non-Newtonian rheology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号