首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   

2.
Abstract

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Editor D. Koutsoyiannis

Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.  相似文献   

3.
4.
 The need for high resolution rainfall data at temporal scales varying from daily to hourly or even minutes is a very important problem in hydrology. For many locations of the world, rainfall data quality is very poor and reliable measurements are only available at a coarse time resolution such as monthly. The purpose of this work is to apply a stochastic disaggregation method of monthly to daily precipitation in two steps: 1. Initialization of the daily rainfall series by using the truncated normal model as a reference distribution. 2.␣Restructuring of the series according to various time series statistics (autocorrelation function, scaling properties, seasonality) by using a Markov chain Monte Carlo based algorithm. The method was applied to a data set from a rainfall network of the central plains of Venezuela, in where rainfall is highly seasonal and data availability at a daily time scale or even higher temporal resolution is very limited. A detailed analysis was carried out to study the seasonal and spatial variability of many properties of the daily rainfall as scaling properties and autocorrelation function in order to incorporate the selected statistics and their annual cycle into an objective function to be minimized in the simulation procedure. Comparisons between the observed and simulated data suggest the adequacy of the technique in providing rainfall sequences with consistent statistical properties at a daily time scale given the monthly totals. The methodology, although highly computationally intensive, needs a moderate number of statistical properties of the daily rainfall. Regionalization of these statistical properties is an important next step for the application of this technique to regions in where daily data is not available.  相似文献   

5.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Several satellite-based precipitation estimates are becoming available at a global scale, providing new possibilities for water resources modelling, particularly in data-sparse regions and developing countries. This work provides a first validation of five different satellite-based precipitation products (TRMM-3B42 v6 and v7, RFE 2.0, PERSIANN-CDR, CMORPH1.0 version 0.x) in the 1785 km2 Makhazine catchment (Morocco). Precipitation products are first compared against ground observations. Ten raingauges and four different interpolation methods (inverse distance, nearest neighbour, ordinary kriging and residual kriging with altitude) were used to compute a set of interpolated precipitation reference fields. Second, a parsimonious conceptual hydrological model is considered, with a simulation approach based on the random generation of model parameters drawn from existing parameter set libraries, to compare the different precipitation inputs. The results indicate that (1) all four interpolation methods, except the nearest neighbour approach, give similar and valid precipitation estimates at the catchment scale; (2) among the different satellite-based precipitation estimates verified, the TRMM-3B42 v7 product is the closest to observed precipitation, and (3) despite poor performance at the daily time step when used in the hydrological model, TRMM-3B42 v7 estimates are found adequate to reproduce monthly dynamics of discharge in the catchment. The results provide valuable perspectives for water resources modelling of data-scarce catchments with satellite-based rainfall data in this region.
Editor M.C. Acreman; Associate editor N. Verhoest  相似文献   

7.
Abstract

Gridded meteorological data are available for all of Norway as time series dating from 1961. A new way of interpolating precipitation in space from observed values is proposed. Based on the criteria that interpolated precipitation fields in space should be consistent with observed spatial statistics, such as spatial mean, variance and intermittency, spatial fields of precipitation are simulated from a gamma distribution with parameters determined from observed data, adjusted for intermittency. The simulated data are distributed in space, using the spatial pattern derived from kriging. The proposed method is compared to indicator kriging and to the current methodology used for producing gridded precipitation data. Cross-validation gave similar results for the three methods with respect to RMSE, temporal mean and standard deviation, whereas a comparison on estimated spatial variance showed that the new method has a near perfect agreement with observations. Indicator kriging underestimated the spatial variance by 60–80% and the current method produced a significant scatter in its estimates.

Citation Skaugen, T. & Andersen, J. (2010) Simulated precipitation fields with variance-consistent interpolation. Hydrol. Sci. J. 55(5), 676–686.  相似文献   

8.
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well‐designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging‐based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

9.
《水文科学杂志》2013,58(5):917-935
Abstract

For urban drainage and urban flood modelling applications, fine spatial and temporal rainfall resolution is required. Simulation methods are developed to overcome the problem of data limitations. Although temporal resolution higher than 10–20 minutes is not well suited for detailed rainfall—runoff modelling for urban drainage networks, in the absence of monitored data, longer time intervals can be used for master planning or similar purposes. A methodology is presented for temporal disaggregation and spatial distribution of hourly rainfall fields, tested on observations for a 10-year period at 16 raingauges in the urban catchment of Dalmuir (UK). Daily rainfall time series are simulated with a generalized linear model (GLM). Next, using a single-site disaggregation model, the daily data of the central gauge in the catchment are downscaled to an hourly time scale. This hourly pattern is then applied linearly in space to disaggregate the daily data into hourly rainfall at all sites. Finally, the spatial rainfall field is obtained using inverse distance weighting (IDW) to interpolate the data over the whole catchment. Results are satisfactory: at individual sites within the region the simulated data preserve properties that match the observed statistics to an acceptable level for practical purposes.  相似文献   

10.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

11.
Rainfall network design using kriging and entropy   总被引:4,自引:0,他引:4  
The spatial distribution of rainfall is related to meteorological and topographical factors. An understanding of the weather and topography is required to select the locations of the rain gauge stations in the catchment to obtain the optimum information. In theory, a well‐designed rainfall network can accurately represent and provide the needed information of rainfall in the catchment. However, the available rainfall data are rarely adequate in the mountainous area of Taiwan. In order to provide enough rainfall data to assure the success of water projects, the rainfall network based on the existing rain gauge stations has to be redesigned. A method composed of kriging and entropy that can determine the optimum number and spatial distribution of rain gauge stations in catchments is proposed. Kriging as an interpolator, which performs linear averaging to reconstruct the rainfall over the catchment on the basis of the observed rainfall, is used to compute the spatial variations of rainfall. Thus, the rainfall data at the locations of the candidate rain gauge stations can be reconstructed. The information entropy reveals the rainfall information of the each rain gauge station in the catchment. By calculating the joint entropy and the transmitted information, the candidate rain gauge stations are prioritized. In addition, the saturation of rainfall information can be used to add or remove the rain gauge stations. Thus, the optimum spatial distribution and the minimum number of rain gauge stations in the network can be determined. The catchment of the Shimen Reservoir in Taiwan is used to illustrate the method. The result shows that only seven rain gauge stations are needed to provide the necessary information. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Linking atmospheric and hydrological models is challenging because of a mismatch of spatial and temporal resolutions in which the models operate: dynamic hydrological models need input at relatively fine temporal (daily) scale, but the outputs from general circulation models are usually not realistic at the same scale, even though fine scale outputs are available. Temporal dimension downscaling methods called disaggregation are designed to produce finer temporal-scale data from reliable larger temporal-scale data. Here, we investigate a hybrid stochastic weather-generation method to simulate a high-frequency (daily) precipitation sequence based on lower frequency (monthly) amounts. To deal with many small precipitation amounts and capture large amounts, we divide the precipitation amounts on rainy days (with non-zero precipitation amounts) into two states (named moist and wet states, respectively) by a pre-defined threshold and propose a multi-state Markov chain model for the occurrences of different states (also including non-rain days called dry state). The truncated Gamma and censored extended Burr XII distributions are then employed to model the precipitation amounts in the moist and wet states, respectively. This approach avoids the need to deal with discontinuity in the distribution, and ensures that the states (dry, moist and wet) and corresponding amounts in rainy days are well matched. The method also considers seasonality by constructing individual models for different months, and monthly variation by incorporating the low-frequency amounts as a model predictor. The proposed method is compared with existing models using typical catchment data in Australia with different climate conditions (non-seasonal rainfall, summer rainfall and winter rainfall patterns) and demonstrates better performances under several evaluation criteria which are important in hydrological studies.  相似文献   

13.
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space–time heterogeneity of rainfall observations make space–time estimation of precipitation a challenging task. In this paper we propose a Box–Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space–time monthly precipitation in the monsoon periods during 1974–2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space–time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.  相似文献   

14.
Spatial-temporal rainfall modelling for flood risk estimation   总被引:4,自引:6,他引:4  
Some recent developments in the stochastic modelling of single site and spatial rainfall are summarised. Alternative single site models based on Poisson cluster processes are introduced, fitting methods are discussed, and performance is compared for representative UK hourly data. The representation of sub-hourly rainfall is discussed, and results from a temporal disaggregation scheme are presented. Extension of the Poisson process methods to spatial-temporal rainfall, using radar data, is reported. Current methods assume spatial and temporal stationarity; work in progress seeks to relax these restrictions. Unlike radar data, long sequences of daily raingauge data are commonly available, and the use of generalized linear models (GLMs) (which can represent both temporal and spatial non-stationarity) to represent the spatial structure of daily rainfall based on raingauge data is illustrated for a network in the North of England. For flood simulation, disaggregation of daily rainfall is required. A relatively simple methodology is described, in which a single site Poisson process model provides hourly sequences, conditioned on the observed or GLM-simulated daily data. As a first step, complete spatial dependence is assumed. Results from the River Lee catchment, near London, are promising. A relatively comprehensive set of methodologies is thus provided for hydrological application.  相似文献   

15.
Detailed hydrologic models require high‐resolution spatial and temporal data. This study aims at improving the spatial interpolation of daily precipitation for hydrologic models. Different parameterizations of (1) inverse distance weighted (IDW) interpolation and (2) A local weighted regression (LWR) method in which elevation is the explanatory variable and distance, elevation difference and aspect difference are weighting factors, were tested at a hilly setting in the eastern Mediterranean, using 16 years of daily data. The preferred IDW interpolation was better than the preferred LWR scheme in 27 out of 31 validation gauges (VGs) according to a criteria aimed at minimizing the absolute bias and the mean absolute error (MAE) of estimations. The choice of the IDW exponent was found to be more important than the choice of whether or not to use elevation as explanatory data in most cases. The rank of preferred interpolators in a specific VG was found to be a stable local characteristic if a sufficient number of rainy days are averaged. A spatial pattern of the preferred IDW exponents was revealed. Large exponents (3) were more effective closer to the coast line whereas small exponents (1) were more effective closer to the mountain crest. This spatial variability is consistent with previous studies that showed smaller correlation distances of daily precipitation closer to the Mediterranean coast than at the hills, attributed mainly to relatively warm sea‐surface temperature resulting in more cellular convection coastward. These results suggest that spatially variable, physically based parameterization of the distance weighting function can improve the spatial interpolation of daily precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The record length and quality of instantaneous peak flows (IPFs) have a great influence on flood design, but these high resolution flow data are not always available. The primary aim of this study is to compare different strategies to derive frequency distributions of IPFs using the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrologic model. The model is operated on a daily and an hourly time step for 18 catchments in the Aller‐Leine basin, Germany. Subsequently, general extreme value (GEV) distributions are fitted to the simulated annual series of daily and hourly extreme flows. The resulting maximum mean daily flow (MDF) quantiles from daily simulations are transferred into IPF quantiles using a multiple regression model, which enables a direct comparison with the simulated hourly quantiles. As long climate records with a high temporal resolution are not available, the hourly simulations require a disaggregation of the daily rainfall. Additionally, two calibrations strategies are applied: (1) a calibration on flow statistics; (2) a calibration on hydrographs. The results show that: (1) the multiple regression model is capable of predicting IPFs with the simulated MDFs; (2) both daily simulations with post‐correction of flows and hourly simulations with pre‐processing of precipitation enable a reasonable estimation of IPFs; (3) the best results are achieved using disaggregated rainfall for hourly modelling with calibration on flow statistics; and (4) if the IPF observations are not sufficient for model calibration on flow statistics, the transfer of MDFs via multiple regressions is a good alternative for estimating IPFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

A disaggregation procedure is presented to render forecast values of precipitation from an atmospheric model with spatial resolution of 11 × 11 km suitable as input for a distributed hydrological model with spatial resolution of 1.1 × 1.1 km. Statistical and morphological properties of the input field, such as spatial mean, variance, correlation structure and intermittency, are respected in the disaggregated field. The adopted approach is a combination of interpolation and simulation. The four nodal points of the atmospheric model grid cell are used both for determining the parameters of the exponential distribution for simulating precipitation values, and in a simple interpolation procedure to determine the spatial location of the precipitation values. A shifted distribution with two parameters is used in the case of full coverage of the grid cell, and a one-parameter distribution with a theoretically derived intermittency parameter is used if intermittency is present. The results are promising with respect to the statistical and morphological properties of the disaggregated field.  相似文献   

18.
Among other sources of uncertainties in hydrologic modeling, input uncertainty due to a sparse station network was tested. The authors tested impact of uncertainty in daily precipitation on streamflow forecasts. In order to test the impact, a distributed hydrologic model (PRMS, Precipitation Runoff Modeling System) was used in two hydrologically different basins (Animas basin at Durango, Colorado and Alapaha basin at Statenville, Georgia) to generate ensemble streamflows. The uncertainty in model inputs was characterized using ensembles of daily precipitation, which were designed to preserve spatial and temporal correlations in the precipitation observations. Generated ensemble flows in the two test basins clearly showed fundamental differences in the impact of input uncertainty. The flow ensemble showed wider range in Alapaha basin than the Animas basin. The wider range of streamflow ensembles in Alapaha basin was caused by both greater spatial variance in precipitation and shorter time lags between rainfall and runoff in this rainfall dominated basin. This ensemble streamflow generation framework was also applied to demonstrate example forecasts that could improve traditional ESP (Ensemble Streamflow Prediction) method.  相似文献   

19.
 This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method – wavelet analysis residual kriging (WARK) – is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.  相似文献   

20.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号