首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 906 毫秒
1.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   

2.
3.
Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.  相似文献   

4.
Mt. Etna, in Sicily (Italy) is well known for frequent effusive and explosive eruptions from both its summit and flanks. South-East Crater (SE Crater), one of the four summit craters, has been the most active in the last 20 years and often produces episodic lava fountains over periods lasting from a few weeks to months. The most striking of such eruptive phases was in 2000. Sixty four lava fountains, separated by quiescent intervals and sometimes associated with lava overflows, occurred that year between January and June, a time period during which we consider the volcano to have been in episodic eruption. This paper presents mainly results of petrochemical investigations carried out on both tephra and lavas collected during a number of the lava fountain episodes in 2000. The new data have been integrated with volcanological and seismic information in order to correlate the features of the eruptive activity with magma-gas dynamics in the plumbing system of SE Crater. The main findings allow us to characterise the 2000 episodic eruption in the framework of the recent SE Crater activity. In particular, we infer that the onset of the 2000 eruption was triggered by the ascent of new, more primitive and volatile-rich magma that progressively intruded into the SE Crater reservoir, where it mixed with the resident, more evolved magma. Furthermore, we argue that the 2000 SE Crater lava fountains largely resulted from the instability of a foam layer accumulated at the top of the underlying reservoir and rebuilt prior to each episode, in agreement with the collapsing foam model for lava fountains.  相似文献   

5.
3 ) erupted from circumferential vents near the summit. These flows are nearly an order of magnitude smaller in volume than the predominantly aa flows erupted from radial eruptive fissures near the break in slope (0.06–0.1 km3). The differences in volume and flow morphology with altitude are due to slower eruption rates from summit vents than from flank vents, which, in turn, are attributable to the different heights the magmas must ascend from shallow reservoirs. These observations support the contention that the steep upper flanks were constructed by the buildup of short lava flows rather than by the structural deformation of originally gently dipping flanks. In addition to the higher eruption rates, a subdued lower flank geometry is promoted by the deposition of lava deltas onto the shallow Galápagos platform on the western, northern, and eastern flanks of the volcano. 40Ar/39Ar geochronology and volume estimates show that, despite their morphologic differences, the growth of the western Galápagos shields has been nearly synchronous, precluding an evolutionary model for their development. The wide variations in elevation, volume, area, and the distribution of slope angles among the western volcanoes can be linked instead to different long-term eruption rates and, to a lesser degree, the position of each volcano relative to the edge of the Galápagos platform. Received: 24 September 1998 / Accepted: 7 August 1999  相似文献   

6.
After the major 1991–1993 eruption, Mt. Etna resumed flank activity in July 2001 through a complex system of eruptive fissures cutting the NE and the S flanks of the volcano and feeding effusive activity, fire fountains, Strombolian and minor phreatomagmatic explosions. Throughout the eruption, magmas with different petrography and composition were erupted. The vents higher than 2,600 m a.s.l. (hereafter Upper vents, UV) erupted porphyritic, plagioclase-rich trachybasalt, typical of present-day summit and flank activity. Differently, the vents located at 2,550 and 2,100 m a.s.l. (hereafter Lower vents, LV) produced slightly more primitive trachybasalt dominated by large clinopyroxene, olivine and uncommon minerals for Etna such as amphibole, apatite and orthopyroxene and containing siliceous and cognate xenoliths. Petrologic investigations carried out on samples collected throughout the eruption provided insights into one of the most intriguing aspects of the 2001 activity, namely the coeval occurrence of distinct magmas. We interpret this evidence as the result of a complex plumbing system. It consists in two separate magma storage systems: a shallow one feeding the activity of the UV and a deeper and more complex storage related to the activity of LV. In this deep storage zone, which is thermally and compositionally zoned, the favourable conditions allow the crystallization of amphibole and the occurrence of cognate xenoliths representing wall cumulates. Throughout 2001 eruption, UV and LV magmas remain clearly distinct and ascended following different paths, ruling out the occurrence of mixing processes between them. Furthermore, integrating the 2001 eruption in the framework of summit activity occurring since 1995, we propose that the 2001 magma feeding the vents lower than 2,600 m a.s.l. is a precursor of a refilling event, which reached its peak during the 2002–2003 Etna flank eruption.  相似文献   

7.
The July–August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3,050 and 2,100 m altitude, and two on the NE flank between 3,080 and 2,600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically, the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore, one of the eccentric vents, at 2,570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, during both the initial and closing stages of the eruption. For 6 days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25×10 6 m 3 of lava and 5–10×10 6 m 3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14–16 m 3 s -1, while the average effusion rate at all fissures was about 11 m 3 s -1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid seventeenth century.  相似文献   

8.
The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5?±?0.4?×?108 kg. The mass eruption rate (MER) is 2.5?±?0.7?×?104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at ?3 phi, ranges between ?5 and 5 phi and has a median value of ?1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4?±?0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4?×?107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (<6 km) deposit may cause more significant differences in the TGS estimations.  相似文献   

9.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

10.
The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号