首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200–600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must be investigated individually by means of detailed mapping and modelling of high resolution geophysical data to assess further the geothermal potential of the region.  相似文献   

2.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

3.
The seismogenic layer thickness correlates with surface heat flow beneath the Japanese islands. However, this correlation is shown at restricted area, where seismic activity is high. In order to overcome this spatial limitation, we used another approach to estimate the regional thermal structure in the crust beneath the Japanese islands with more uniform coverage. The bottom depths of the magnetized crust determined from the spectral analysis of residual magnetic anomalies is generally interpreted as the level of the Curie point isotherm. We applied this method to estimate the crustal thermal structure in square windows of 2.125° × 2.125°. The obtained depths ranging from 11 to 30 km with average value of 18 km, correlate with the seismogenic layer thickness. It suggests that the Curie point depth is a useful indicator of the crustal thermal structure in these regions.  相似文献   

4.
磁性基底和居里面是研究地壳和岩石圈的地质构造和热演化过程的两个重要磁性界面.为了研究南海及邻区磁性基底和居里面所反映的深部构造及其热活动的地质效应,本文在对磁异常进行化极处理的基础上,采用最小曲率位场分离方法,获得了磁性基底和居里面引起的化极磁异常,利用双界面模型快速反演方法,反演了南海及邻区的磁性基底和居里面深度,研究了磁性基底、居里面深度及其分布特征,讨论了磁性基底、居里面与新生界深度之间相关性特征及其地质意义.研究表明,磁性基底深度5~20 km,洋盆南北两侧磁性基底走向分别以NE、NEE向为主,中南半岛周缘磁性基底呈NW、NNW走向.居里面深度15~32 km,宏观表现为"洋壳浅、周缘深"及周缘"北浅南深"的特征,洋盆地区居里面深度呈现"西南浅、东部深",洋壳与陆壳接触带在居里面深度上表现为梯级带特征.新生界深度与磁性基底深度相关性(Correlation between the depth of magnetic basement and Cenozoic,CDMBC)多以不规则形状分布,在盆地的沉积中心呈现正相关;新生界深度与居里面深度相关性(Correlation between the depth of Curie surface and Cenozoic,CDCSC)多呈NE、NEE向带状正相关分布,走向与盆地走向一致;莺歌海盆地、琼东南盆地、万安盆地南部和曾母盆地CDMBC呈正相关、CDCSC呈负相关,莺歌海相关性特征推测为:居里面随岩石圈变形隆起而抬升,磁性基底张裂下沉,发生大规模沉降引起;琼东南盆地相关性特征推测为:居里面随岩石圈变形下坳而下降,沉积中心与磁性基底下沉方向一致;万安盆地和曾母盆地相关性特征推测为:深部流体沿南海西缘断裂直接进入地壳,引起该处居里面深度变浅.  相似文献   

5.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

6.
The magnetic susceptibility of 1300 samples of igneous rock drill cuttings obtained from eight deep drill holes in Iceland has been measured, in order to directly provide limits on the thickness of the layer which is the source of the magnetic anomalies over Iceland. The remanent magnetism of some of the material has also been studied, and the variation of magnetic susceptibility in 740 lava flows from eastern Iceland has been analysed as a function of depth of burial.All the results indicate no systematic change of susceptibility with depth up to 2.0 km. The Curie point of all deeply buried basalts in Iceland appears to be close to that of magnetite, so that the magnetic layer may be 5 km or more in thickness when susceptibility contrasts are considered; lateral contrasts in primary remanence may reach to 3 km depth. Derivation of a magnetic layer thickness in Iceland from analyses of magnetic anomalies, using methods which have been conventionally applied to marine magnetic anomalies could, on the other hand, yield much lower apparent thickness values (less than 1 km).We therefore argue that estimates of the magnetic layer thickness in oceanic regions should be based on considerations of magnetite Curie point isotherm behaviour, rather than on anomaly analysis.  相似文献   

7.
Azimuthally averaged power spectra are widely used in the Curie point depth (CPD) estimation with the implicit assumption that the magnetization distribution is random and uncorrelated. However, the marine magnetic anomalies are caused by bands of normal and reverse magnetization and show obvious trends. To investigate the effects of the anisotropy of marine magnetic anomalies on the CPD estimates, we develop 3D fractal striped magnetization models to produce lineated marine magnetic anomalies for the first time. We analyze the spectra anisotropy of the lineated magnetic anomalies of the synthetic fractal striped magnetization models and investigate its effects on the CPD estimates. The synthetic models and actual data show that the spectra of the lineated marine magnetic anomalies are directionally anisotropic. The amplitude response is strong and the slope of the logarithmic spectrum is large in a direction perpendicular to the stripes of magnetic anomalies, whereas the amplitude response is weak and the slope of the logarithmic spectrum is small in a direction parallel to the stripes of magnetic anomalies. The depth estimates in the perpendicular direction are close to the actual values, whereas the depths estimates in the parallel direction are significantly lower than the actual values. The actual marine magnetic anomalies of the South China Sea exhibit an anisotropic power spectrum that is consistent with the spectral anisotropy of magnetic anomalies of the synthetic fractal striped magnetization models.  相似文献   

8.
The residual aeromagnetic total field intensity anomalies in central Anatolia were calculated from the regional aeromagnetic anomalies surveyed by the Mineral Research and Exploration (MTA) of Turkey. The residual aeromagnetic data were analyzed to produce Curie point estimates by the method of OKUBO et al. (1985). The Curie point depth of central Anatolia varies from 7.9 km and 22.6 km. The shallowest Curie point depths were observed around the Cappadocia and Erciyes Volcanic complexes in central Anatolia. A good correlation was deduced between the Curie point depths and the heat-flow data measured previously, which is most certainly important for the geothermal resources of the region. The shallow Curie point depths also correlate well with the hot spring locations in central Anatolia.  相似文献   

9.
中国陆域居里等温面深度特征   总被引:14,自引:1,他引:13       下载免费PDF全文
基于最新编制的1/100万全国航陆域磁异常图数据,采用功率谱法对中国陆域的居里点深度进行了估算,获得了8004个居里点深度,完成了中国陆域居里面深度图的编制,首次完整的展现了中国陆域的居里面起伏特征.研究表明,居里面在稳定地块表现为坳陷,埋深为28~45km,如塔里木盆地,准噶尔盆地,柴达木盆地,可可西里—巴颜喀拉坳陷区,扬子盆地区,华北盆地区,松辽盆地,二连盆地,巴彦浩特—武威—潮水盆地,珠江口—琼东南盆地等.华北盆地区的居里面深度与塔里木陆块和扬子陆块有较大的差异,相对偏浅,这可能与华北陆块遭受了复杂的后期改造,导致软流圈上隆和岩石圈减薄有关.可可西里—巴颜喀拉地块是青藏高原北部发育的呈NWW向展布的巨型居里面坳陷带,其原因是该地区发育大面积的三叠系沉积地层和较少的岩浆活动,这些稳定的地块都具有莫霍面隆起和居里面坳陷的特征.在活动频繁的造山带居里面以隆起为特征,埋深为18~26km,如东北部山岭区、西北部山岭区、秦岭—大别山地区、西昆仑—西藏—三江—康滇地区、东南沿海地区等.这反映了构造运动及岩浆活动所引起的地壳地温梯度的差异.根据我国816个大地热流数据,对比研究居里面深度与地温梯度和大地热流的关系,结果显示居里面深度与热流值并非线性关系,居里面深度大于30km时,热流值较低,均小于100mW·m~(-2);在居里面深度小于30km的地区,热流值变化范围较大.并且,随着热流值的升高,热流值有向中国东部沿海、藏南—三江地区、秦岭—大别地区、辽东等集中的趋势,这些地区都呈现出居里面隆起的特征,是地热资源勘探开发的重要远景区.  相似文献   

10.
Curie-point depth and heat flow values of the Erciyes region are determined to identify the thermal regime of the Central Anatolia by applying the spectral analysis method to the magnetic anomaly data. To compute the spectrum of the data, the magnetic anomaly of the region is transformed into 2-D Fourier domain to attain the average Curie depth. This method is useful in determining the top boundary of magnetic anomaly sources and reveals the Curie depth as 13.7 km in the study area. The obtained results imply a high thermal gradient (42.3°C km?1) and corresponding heat flow values (88.8 mWm?2) in the research area. Using the temperature value measured at borehole drilled by the General Directorate of Mineral Research and Exploration of Turkey (MTA), the values for the thermal gradient and heat flow value were computed as 50.7°C km?1, 106.5 mWm?2. From the heat flow value, the Curie-point depth was determined as 11.4 km in this region. It is concluded from the obtained values that the region has very high geothermal potential caused by partial melting of the lower crust.  相似文献   

11.
用康滇大陆古裂谷带地区航磁异常计算居里深度   总被引:5,自引:2,他引:5  
用四川省物探大队1984年编制的1:100万康滇大陆古裂谷带地区航磁异常图,计算该区居里深度。该图包括的面积约60万km2,自东经98°至104°30′,北纬24°至34°。在图上以5km的点距取数,100km×100km的方块作个别分析,每块面积与相邻块相重叠一半。每个块内的数据采用频率域的矩谱法及空间域的线性反演及积分迭代法进行分析计算。为了验证方法的可行性作了理论模型计算。 由计算结果得到该区居里温度等深线图,居里点温度的深度在20km至33km之间。结合大地构造特点及已知地热资料,对图进行了分析。  相似文献   

12.
Through reduction to the North Pole and upward continuation of the total field magnetic anomalies, we analyze magnetic patterns and spatial distributions of different tectonic blocks and crustal faults in eastern China and adjacent seas. Depths to the Curie isotherms are further estimated from radially averaged amplitude spectra of magnetic data reduced to the pole. Data reductions effectively enhance boundaries of regional tectonic belts, such as the Dabie ultra-high metamorphic belt, the Tanlu Fault, and the Diaoyudao Uplift. Curie depths are estimated at between 19.6 and 48.9 km, with a mean of 31.7 km. The Subei Basin and the south Yellow Sea Basin in the lower Yangtze block show relatively deep Curie isotherms, up to about 35 km in depth, whereas in the surrounding areas Curie depths are averaged at about 25 km. This implies that the lower Yangtze Block has experienced a unique tectonic evolution and/or has unique basement lithology and structures. From a regional perspective, sedimentary basins, such as the Subei Basin, the south Yellow Sea Basin, and the East China Sea Basin, normally show deeper Curie isotherms than surrounding uplifts such as the Diaoyudao Uplift and the Zhemin Uplifts. Curie isotherms also upwell significantly in volcanically active areas such as the Ryukyu Arc and the Cheju Island, confirming strong magmatic and geothermal activities at depth. Supported by National Natural Science Foundation of China (Grant Nos. 40776026 and 40876022) and National Basic Research Program of China (Grant No. 2007CB411702)  相似文献   

13.
Ground total magnetic field data of Albania were used to produce estimates of the Curie point isotherm. The strategy followed was to estimate the depth to the bottom of the deepest magnetic sources. Firstly, the average depth to the top of the deepest crustal block, zt, was computed by linear fitting to the second lowest-frequency segment of the azimuthally averaged power spectrum of the total magnetic field data. Then, the depth to the centroid of the deepest crustal block, z0, was computed by linear fitting to the lowest-frequency segment of the azimuthally averaged power spectrum of a distribution of magnetic dipoles. Finally, the depth to the bottom, the inferred Curie point depth, zb, was calculated from zb=2z0zt. Curie depth estimates for Albania vary from about 17 to 25.5 km (below sea level). These results are consistent with the depths inferred by extrapolating geothermal gradient and heat-flow values, suggesting that the Curie point depth analysis is useful to estimate the regional thermal structure. It also suggests that the approach was valid and that ground total magnetic field data can be used for this purpose.  相似文献   

14.
Magnetic anomalies over the continental shelf off the east coast of India (Orissa) suggest the presence of a highly magnetic rock type magnetized with an intensity of 900 nT in a direction, azimuth(A) = 150° and inclination(I) = +65°. This suggest the occurrence of igneous volcanic rocks which is confirmed from samples found below Tertiary sediments from a few boreholes in this region. The depth of this rock type as estimated from magnetic anomalies varies from approximately 1–2 km near the coast to 4–4.5 km towards the shelf margin. This direction of magnetization is the reverse of the reported direction of magnetization for the Rajmahal Traps of the Cretaceous period (100–110 m.y). A small strip of the body near the continental shelf margin appears, however, to possess normal magnetization suggesting the occurrence of normal and reversed polarities side by side, a characteristic typical for oceanic magnetic anomalies. The reversed polarity of the rocks on the continental shelf suggests that they correspond probably to the MO reversal (115 m.y.) on world magnetostratigraphic scale and provide a paleolatitude of 47°S for the land mass of India which agrees with the palaeoreconstruction of India and Antarctica. In this reconstruction, the Mahanadi Gondwana graben on the Indian subcontinent falls into line with the Lambert Rift in Antarctica, suggesting a probable common ancestry. The volcanic rocks on the continental shelf off the east coast of India might represent a missing link, that is, rocks formed between India and Antarctica at the time of the break-up of Gondwanaland. Satellite magnetic anomalies (MAGSAT) recorded over the Indian shield and interpreted in terms of variations in the Curie point geotherm provide a direction of magnetization which also places this continent close to Antarctica. As such MAGSAT anomalies recorded over eastern Antarctica are found compatible with those recorded over the Indian shield.  相似文献   

15.
In this paper, aeromagnetic and gravity anomalies obtained from the General Directorate of Mineral Research and Exploration were subjected to upward continuation to 3?km from the ground surface to suppress shallow effects and to expose only regional, deep sources. Then, a reduction to pole (RTP) map of aeromagnetic anomalies was produced from the 3?km upward continued data. A sinuous boundary to the south of Turkey is observed in the RTP map that may indicate the suture zone between the Anatolides and African/Arabian Plates in the closure time of the Tethys Ocean. The sinuous boundary can be correlated with the recent palaeo-tectonic maps. The southern part of the sinuous boundary is quite different and less magnetic in comparison with the northern block. In addition, maxspots maps of the aeromagnetic and gravity anomalies were produced to find out and enhance the boundaries of tectonic units. Crustal thickness, recently calculated and mapped for the western Turkey, is also extended to the whole of Turkey, and the crustal thicknesses are correlated with the previous seismological findings and deep seismic sections. The average crustal thickness calculations using the gravity data are about 28?km along the coastal regions and increase up to 42?km through the Iranian border in the east of Turkey. Density and susceptibility values used as parameters for construction of two-dimensional (2D) gravity and magnetic models were compiled in a table from different localities of Turkey. 2D models indicate that all of the anomalous masses are located in the upper crust, and this could be well correlated with the earthquakes which occurred at shallow depths.  相似文献   

16.
Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.  相似文献   

17.
川西高原重磁异常特征与构造背景分析   总被引:5,自引:1,他引:4       下载免费PDF全文
高玲举  张健  董淼 《地球物理学报》2015,58(8):2996-3008
川西高原位于青藏高原东缘,是我国大陆地壳构造变形及地震活动最强烈的区域.利用最新重力、航磁资料,通过异常分析和反演计算,研究了该区鲜水河断裂、理塘断裂、金沙江断裂的重磁异常特征、莫霍面特征、居里面特征,分析得出了这些断裂的深部地质结构与构造背景.计算表明:川西高原莫霍面东南浅、西北深,地壳厚度在43~63km之间.居里面特征表现为条带状,深度在17~23km之间.其中,鲜水河断裂带对应莫霍面深度梯度带,居里面为高低起伏圈闭.理塘断裂带北段莫霍面局部隆坳相间,南段莫霍面逐渐抬升,居里面呈现由西向东加深的梯度带.金沙江断裂带,居里面形成局部抬升,深部可能存在高温地热异常源.综合分析认为,川西高原地壳结构主要特点为:增厚的下地壳,热-塑性变形的中地壳,脆性变形的上地壳.  相似文献   

18.
This paper presents a case study of mapping basement structures in the northwestern offshore of Abu Dhabi using high‐resolution aeromagnetic data. Lineament analysis was carried out on the derivatives of the reduced‐to‐the‐pole magnetic data, along with supporting information from published geologic data. The lineament analysis suggests three well‐defined basement trends in the north–south, northeast–southwest, and northwest–southeast directions. The reduced‐to‐the‐pole magnetic data reveal high positive magnetic anomalies hypothesized to be related to intra‐basement bodies in the deep seated Arabian Shield. Depth to basement was estimated using spectral analysis and Source Parameter Imaging techniques. The spectral analysis suggests that the intruded basement blocks are at the same average depth level (around 8.5 km). The estimated Source Parameter Imaging depths from gridded reduced‐to‐the‐pole data are ranged between 4 km and 12 km with a large depth variation within small distances. These estimated depths prevent a reliable interpretation of the nature of the basement relief. However, low‐pass filtering of the horizontal local wavenumber data across two profiles shows that the basement terrain is characterized by a basin‐like structure trending in the northeast–southwest direction with a maximum depth of 10 km. Two‐dimensional forward magnetic modelling across the two profiles suggests that the high positive magnetic anomalies over the basin could be produced by intrusion of mafic igneous rocks with high susceptibility values (0.008 to 0.016 SI.  相似文献   

19.
The lithospheric magnetic field (LMF) in China and its surrounding are calculated using the spherical harmonic coefficients given by the NGDC-720 model. The LMF comes from the magnetization of minerals in the crust and in the uppermost mantle. It may, therefore, provide unique insight into lithospheric tectonic processes and mechanisms. Here, we study the geomagnetic manifestation of active tectonic blocks, and find a close correlation between the LMF and seismicity. Many large faults are found to closely overlap with magnetic anomalies, or are distributed along the boundaries of magnetic anomalies. Earthquakes in these fault regions have occurred on the boundaries of magnetic anomalies, or in the transition zones between positive and negative anomalies. We analyze the components of the LMF, and the LMFs at different altitudes, finding that the vertical component, B z at 200 km, is the most related to seismic activity. Relevant physical mechanisms are also discussed. We propose that the stress or viscosity differences caused by temperature variations, which manifest in the LMF, may be the predominant reason for the correlation between the LMF and seismic activity along large faults.  相似文献   

20.
—?The aeromagnetic data of Macedonia and Thrace were used to produce Curie point estimates. The data were high pass filtered to remove components arising from topography and magnetic core fields which were not adequately modeled by a DGRF. The depth to the centroid, z 0, of the deepest distribution of the magnetic dipoles was obtained by computing a least-squares fit to the lowest-frequency segment of the azimuthally averaged log power spectrum. The average depth to the top of the deepest crustal block was computed as the depth to the top, z t , of the second lowest-frequency segment of the spectrum. The depth to the bottom of the deepest magnetic dipoles, the inferred Curie point depth, was then calculated from z b =2z 0???z t . The Curie depth estimates for Macedonia and Thrace range between 11.2 and 17.3?km. These results are consistent with the depths inferred by extrapolating known geothermal gradient and heat-flow values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号