首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Mount Etna volcano erupted almost simultaneously on its northeastern and southern flanks between October 27 and November 3, 2002. The eruption on the northeastern flank lasted for 8 days, while on the southern flank it continued for 3 months. The northeastern flank eruption was characterized by the opening of a long eruptive fracture system between 2,900 and 1,900 m.a.s.l. A detailed survey indicates that the fractures’ direction shifted during the opening from N10W (at the NE Crater, 2,900 m) to N45E (at its lowest portion, 1,900 m) and that distinct magma groups were erupted at distinct fracture segments. Based on their petrological features, three distinct groups of rocks have been identified. The first group, high-potassium porphyritic (HKP), is made up of porphyritic lavas with a Porphyritic Index (P.I.) of 20–32 and K2O content higher than 2 wt%. The second group is represented by lavas and tephra with low modal phenocryst abundance (P.I. < 20) named here oligo-phyric (low-phyric), and K2O content higher than 2 wt% (HKO, high-potassium oligophyric). The third group, low-potassium oligophyric (LKO), consists of tephra with oligophyric texture (P.I. < 20) but K2O content < 2 wt%. K-rich magmas (HKP and HKO) are similar to the magma erupted on the southern flank, and geochemical variations within these groups can be accounted for by a variable degree of fractionation from a single parent magma. The K-poor magma (LKO), erupted only in the upper segment of the fracture, cannot be placed on the same liquid line of descent of the HK groups, and it is similar to the magmas that fed the activity of Etna volcano prior to the eruption of 1971. This is the first time since then that a magma of this composition has been documented at Mt. Etna, thus providing a strong indication for the existence of distinct batches of magma whose rise and differentiation are independent from the main conduit system. The evolution of this eruption provides evidence that the NE Rift plays a very active role in the activity of Mt. Etna volcano, and that its extensional tectonics allows the intrusion and residence of magma bodies at various depths, which can therefore differentiate independently from the main open conduit system.  相似文献   

2.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

3.
Based on detailed field, petrographic, chemical, and isotopic data, this paper shows that the youngest magmas of the active Nisyros volcano (South Aegean Arc, Greece) are an example of transition from rhyolitic to less evolved magmas by multiple refilling with mafic melts, triggering complex magma interaction processes. The final magmatic activity of Nisyros was characterized by sub-Plinian caldera-forming eruption (40?ka), emplacing the Upper Pumice (UP) rhyolitic deposits, followed by the extrusion of rhyodacitic post-caldera domes (about 31–10?ka). The latter are rich in magmatic enclaves with textural and compositional (basaltic–andesite to andesite) characteristics that reveal they are quenched portions of mafic magmas included in a cooler more evolved melt. Dome-lavas have different chemical, isotopic, and mineralogical characteristics from the enclaves. The latter have lower 87Sr/86Sr and higher 143Nd/144Nd values than dome-lavas. Silica contents and 87Sr/86Sr values decrease with time among dome-lavas and enclaves. Micro-scale mingling processes caused by enclave crumbling and by widespread mineral exchanges increase from the oldest to the youngest domes, together with enclave content. We demonstrate that the dome-lavas are multi-component magmas formed by progressive mingling/mixing processes between a rhyolitic component (post-UP) and the enclave-forming mafic magmas refilling the felsic reservoir (from 15?wt.% to 40?wt.% of mafic component with time). We recognize that only the more evolved enclave magmas contribute to this process, in which recycling of cumulate plagioclase crystals is also involved. The post-UP end-member derives by fractional crystallization from the magmas leftover after the previous UP eruptions. The enclave magma differentiation develops mainly by fractional crystallization associated with multiple mixing with mafic melts changing their composition with time. A time-related picture of the relationships between dome-lavas and relative enclaves is proposed, suggesting a delay between a mafic magma input and the relative dome outpouring. We also infer that the magma viscosity reduction by re-heating allows dome extrusion without explosive activity.  相似文献   

4.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   

5.
6.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

7.
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ~ 2 to ~ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.  相似文献   

8.
We measured quantitatively colors of volcanic ash deposits erupted from three different styles of summit activity (Strombolian activity, Vulcanian explosions and continuous ash venting activity) at Sakurajima volcano from 1974 to 1985. Colors of Strombolian ash samples have larger yellow components of their visible spectra (b? values) than those of explosion and continuous venting ash samples. Colors of explosion ash samples show larger variation in both red and yellow components of their visible spectra (a? and b? values, respectively), while colors of continuous venting ash samples are in the narrow ranges within colors of explosion ash samples. Colors of components with lower densities than 3.1 g/cm3 (groundmass and phenocrystic plagioclase) obtained by magnetic and heavy liquid separation methods are similar to the unseparated bulk ash samples. This result suggests that the color variations of ash deposits are mainly originated from the particles composed of groundmass. The particles can be classified into three different types of particles with different vesicularity and crystallinity (vesicular particle [VP], dense particle with vesicles [DPV] and dense particle without vesicles [DP]). Analytical results of component proportions, chemical compositions of groundmass glasses, ferrous iron contents and surface ferric materials show that (1) VP has larger yellow components of the visible spectrum (b? values) and high ferrous iron content, and is less crystallized than the DP and DPV, (2) DP has larger red and yellow components of its visible spectrum (a? and b? values, respectively) and involves ferric materials on the surfaces produced by oxidation process, and (3) DPV has smaller red and yellow components of its visible spectrum (a? and b? values, respectively) and involves less ferric materials on the ash surfaces. Color differences of ash deposits from three different activity styles can be explained by the different mixing ratios of VP, DPV and DP. During the Strombolian activity, the VP is a main component in the ash, which is formed from relatively less degassed and crystallized magma. In the Vulcanian explosion and continuous ash venting activity, the proportions of DPV and DP in ash are larger than that in the Strombolian activity. The highly crystallized DP may correspond to a vent cap, and DPV to a magma below the cap. The color measurements of ash deposits provide information on the pre-eruptive processes at the shallower levels of a conduit.  相似文献   

9.
The maximum heat transfer possible from a sphere of magma ascending through a viscous lithosphere is estimated using a Nusselt number formulation. An upper bound is found for the Nusselt number by using the characteristics of a potential flow which, it is argued, is similar in the limit to a non-isothermal Stokes-flow in which the fluid (wall rock) viscosity is sensitive to temperature. A set of cooling curves are calculated for a magma ascending at a constant velocity beneath an island arc. If the magma is to arrive at the surface without solidifying its ascent velocity must be greater than about 5.8 × 10?3 cm s?1, for a magma radius of 1 km, and greater than about 2.7 × 10?5 cm s?1, for a magma radius of 6 km. If the magma begins its ascent crystal free it will generally become superheated over most of its ascent. Using essentially the same formulation as for heat transfer the mass transfer to or from a spherical body of magma ascending at these velocities is given approximately by ΔC ? ΔW/10, where ΔC is the change in weight percent of a component in the magma during ascent and ΔW is the compositional contrast of that component between the magma and its wall rock.  相似文献   

10.
To elucidate the conduit processes controlling the amplitude of air pressure waves (A pw) from vulcanian eruptions at the Sakurajima volcano, Japan, we examine ash particles emitted by eruptions preceded by swarms of low-frequency B-type earthquakes (BL-swarms). We measure the water content of glassy ash, an indicator of shallow magma storage pressure, and vesicle textures, such as vesicle number density (VND). These data allow us to reconstruct the shallow conduit by comparing vesicularity with inferred pressure, and therefore depth, of magma storage. The results show that VND increases with depth, implying formation of a dense, outgassed magma cap underlain by more-vesicular, less-outgassed, magma. The VND and water content in the glassy ash positively correlate with the duration of BL-swarms, suggesting that such seismic signals reflect upward migration of deep gas- and vesicle-rich magma. Finally, it is determined that A pw positively correlates with VND, suggesting that the amplitude of the air pressure waves is controlled by the amount of accumulated gas- and bubble-rich magma below the dense magma cap.  相似文献   

11.
Late Cenozoic alkali basaltic lavas of the Lunar Crater Volcanic Field (LCVF), located in the center of the Great Basin of the Western U.S.A., contain a diverse suite of nodule samples of the lower crust and upper mantle. This paper documents a composite nodule from the Marcath flow in which an amphibole-bearing wehrlite (59% olivine, 30% clinopyroxene, 6% amphibole) is cut by a 6–9 mm wide vein of andesine-amphibolite (80% kaersutite, 15% andesine, 3% ilmenite). Aside from nodule-basalt reaction at the nodule exterior, there is little chemical variation either within or between individual grains of hydrous and anhydrous phases in the vein and host wehrlite. Furthermore, there is no systematic compositional zoning in the wehrlite relative to vein proximity. The whole-rock major and trace element composition of the vein is similar to a primitive (Mg/(Mg+Fe)=0.692) basaltic liquid and has Al, Fe, Mg, Ca, Mn, Na, K, Zr, Y and Sr contents similar to basalts observed in the LCVF. In contrast to the Sr isotopic equilibrium displayed by vein feldspar and vein amphibole, Sr isotopic disequilibrium is exhibited between the vein (0.70318(4)), wehrlite (0.70322(4)), and host basalt (0.70357(5) n=3). However, the Sr isotopic ratios of older LCVF basalts (0.7030–0.7038; n=14) overlap those of the vein and wehrlite, and the magmatic activity leading to vein and wehrlite formation could be related to this older phase of LCVF volcanism. Petrographic and geochemical evidence is not consistent with a metasomatic origin for the vein and instead supports the view that the vein originated by the intrusion into a wehrlite mass and subsequent crystallization of a relatively primitive alkali basaltic magma in the lower crust or upper mantle. The wehrlite contains olivine of FO71 and probably originated by crystal separation and accumulation from a relatively differentiated basaltic magma in the lower crust or upper mantle.  相似文献   

12.
One of the fundamental questions in modern volcanology is the manner in which a volcanic eruption is triggered; the intrusion of fresh magma into a reservoir is thought to be a key component. The amount by which previously ponded reservoir magma interacts with a newly intruded magma will determine the nature and rate of eruption as well as the chemistry of erupted lavas and shallow dykes. The physics of this interaction can be investigated through a conventional monitoring procedure that incorporates the simple and much used Mogi model relating ground deformation (most simply represented by Δh) to changes in volume of a magma reservoir. Gravity changes (Δg) combined with ground deformation provide information on magma reservoir mass changes. Our models predict how, during inflation, the observed Δgh gradient will evolve as a volcano develops from a state of dormancy through unrest into a state of explosive activity. Calderas in a state of unrest and large composite volcanoes are the targets for the methods proposed here and are exemplified by Campi Flegrei, Rabaul, Krafla, and Long Valley. We show here how the simultaneous measurement of deformation and gravity at only a few key stations can identify important precursory processes within a magma reservoir prior to the onset of more conventional eruption precursors.  相似文献   

13.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

14.
We investigate the effects of vertical relative motion between gas and liquid on eruption styles by formulating a model for 1-dimensional steady flow in volcanic conduits. As magma ascends and decompresses, volatiles exsolve and volume fraction of gas increases. As a result, magma fragmentation occurs and the flow changes from bubbly flow to gas-pyroclast flow. In our model, a transitional region (‘permeable flow region’) is introduced between the bubbly flow region and the gas-pyroclast flow region. In this region, both the gas and the liquid are continuous phases, allowing the efficient vertical escape of gas through the permeable structure. We describe the features of conduit flow with relative motion of gas and liquid using non-dimensional numbers α, γ and ε. The parameter α represents the ratio of effects of wall friction to gravitational load, and is proportional to magma flow rate. The parameter γ represents the degree of decompression for the gas-pyroclast flow to reach the sound velocity at α = 1, and is proportional to rc2/μ for given magma temperature and initial volatile content, where rc is conduit radius and μ is liquid viscosity. The parameter ε is defined as the ratio of liquid–wall friction force to liquid–gas interaction force in the permeable flow region, and represents the efficiency of gas escape from magma. The values of γ and ε are determined only by magma properties and geological conditions such as liquid viscosity, magma permeability and conduit radius. We formulate a 1-dimensional steady-state conduit flow model to find non-dimensional magma flow rate α as a function of magma properties and geological conditions (e.g., γ and ε) under given boundary conditions. When the relative motion is taken into account with the assumption that magma fragmentation occurs when the gas volume fraction reaches some critical values, the pressure at the fragmentation level (Pf) decreases as the magma flow rate (α) decreases or the efficiency of gas escape (ε) increases, because gas escape suppresses the increase in the gas volume fraction accompanying magma ascent. When ε is so large that Pf is below the atmospheric pressure (Pa), the flow reaches the vent before fragmentation at low α. On the other hand, when ε is so small that Pf is greater than Pa, the flow reaches the vent after fragmentation at high α. These steady-state solutions of the flow at low and high α correspond to effusive and explosive eruptions, respectively. We present a graphical method to systematically find α. On the basis of the graphical method, a simple regime map showing the relationship between the assemblage of the solutions of conduit flow and the magma properties or the geological conditions is obtained.  相似文献   

15.
— The Altiplano-Puna Volcanic Complex (APVC) in the central Andes is the product of an ignimbrite “flare-up” of world class proportions (de Silva, 1989). The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Seven PASSCAL broadband seismic stations were operated in the Bolivian portion of the APVC from October 1996 to September 1997 and recorded teleseismic earthquakes and local intermediate-depth events in the subducting Nazca plate. Both teleseismic and local receiver functions were used to delineate the lateral extent of a regionally pervasive ~20-km-deep, very low-velocity layer (VLVL) associated with the APVC. Data from several stations that sample different parts of the northern APVC show large amplitude Ps phases from a low-velocity layer with Vs ≤ 1.0 km/s and a thickness of ~1 km. We believe the crustal VLVL is a regional sill-like magma body, named the Altiplano–Puna magma body (APMB), and is associated with the source region of the Altiplano–Puna Volcanic Complex ignimbrites (Chmielowski et al., 1999).¶Large-amplitude P–SH conversions in both the teleseismic and local data appear to originate from the top of the APMB. Using the programs of Levin and Park (1998), we computed synthetic receiver functions for several models of simple layered anisotropic media. Upper-crustal, tilted-axis anisotropy involving both Vp and Vs can generate a “split Ps” phase that, in addition to the Ps phase from the bottom of a thin isotropic VLVL, produces an interference waveform that varies with backazimuth. We have forward modeled such an interference pattern at one station with an anisotropy of 15%–20% that dips 45° within a 20-km-thick upper crust. We develop a hypothesis that the crust above the “magma body” is characterized by a strong, tilted-axis, hexagonally symmetric anisotropy. We speculate that the anisotropy is due to aligned, fluid-filled cracks induced by a “normal-faulting” extensional strain field associated with the high elevations of the Andean Puna.  相似文献   

16.
We investigate the origin of diversity of eruption styles in silicic volcanoes on the basis of a 1-dimensional steady conduit flow model that considers vertical relative motion between gas and liquid (i.e., vertical gas escape). The relationship between the assemblage of steady-state solutions in the conduit flow model and magma properties or geological conditions is expressed by a regime map in the parameter space of the ratio of liquid-wall friction force to liquid–gas interaction force (non-dimensional number ε), and a normalized conduit length Λ. The regime map developed in the companion paper shows that when ε is smaller than a critical value εcr, a solution of explosive eruption exists for a wide range of Λ, whereas an effusive solution exists only when Λ ~ 1. On the other hand, when ε > εcr, an effusive solution exists for a wide range of Λ. Diversity of eruption styles observed in nature is explained by the change in ε accompanied by the change in magma viscosity during magma ascent. As magma ascends, the magma viscosity increases because of gas exsolution and crystallization, leading to the increase in ε. For the viscosity of hydrous silicic magma at magma chamber, ε is estimated to be smaller than εcr, indicating that an explosive solution exists for wide ranges of geological parameters. When magma flow rate is small, the viscosity of silicic magma drastically increases because of extensive crystallization at a shallow level in the conduit. In this case, ε can be greater than εcr; as a result, a stable effusive solution co-exists with an explosive solution.  相似文献   

17.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

18.
The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H2O contents (1 to 4%), temperature (960–1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma “underplating”; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or “spill-over” emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km3) of the eruption, nearly ten times less than the 0.2 km3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.  相似文献   

19.
Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ∼1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ∼6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ∼30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.  相似文献   

20.
Stromboli is well known for its persistent, normal explosive activity, consisting of intermittent, mild to moderate, Strombolian explosions that typically occur every 10–20 min. All tephras erupted during this activity usually fall back into the crater terrace, and consist of volatile-poor scoriae fed by Highly Porphyritic (HP) magma. More occasionally, large explosions or “paroxysms” eject a greater quantity of tephra, mainly consisting of HP scoriae and pumice clasts of Low Porphyritic (LP) magma, but also including large lithic blocks. In addition to this activity, between 2004 and 2006 high energy explosions, displaying an intermediate eruptive style between that of normal and paroxysmal explosions in terms of column height, duration and tephra dispersal, were observed to occur at a frequency of one to eight events per year. While many volcanological, geochemical and geophysical studies have focused in the last few years on the two end-members of activity, i.e. normal or paroxysmal, a detailed investigation on these intermediate types of events has not been carried out yet. Here we report of a study on the 9 January 2005 explosion, one of the high energy explosions during which the main fountaining phase lasted nearly a minute causing ejection of coarse bombs up to a height of 120 m, and of ash and lapilli to > 200 m. An accompanying ash plume rose up to 500 m at the end of the explosion. We present a multidisciplinary approach that integrates the results from analysis of live-camera images with compositional and textural characterization of the erupted products. Major element composition of glassy groundmass and 3D views of textures in the erupted scoriae support the hypothesis based on volcanological observations that this explosion falls between normal and paroxysmal activity, for which we use the term “intermediate”. By comparing the video-camera images of the 9 January 2005 explosion with volcanological features of other high energy explosions that occurred at Stromboli between June 2004 and October 2006, we find that three additional events can be considered intermediate explosions, suggesting that this type of activity may be fairly common on this volcano. The results of this study, although preliminary given our limited dataset, clearly indicate that the methodology used here can be successfully applied to better define the range of eruptive styles typifying the normal explosive activity, potentially improving our capability of eruption forecasting and assessing volcanic hazard at Stromboli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号