首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

2.
We relocated the hypocentral coordinates of small to moderate-sized earthquakes reported by the National Earthquake Information Center (NEIC) between April 2002 and August 2006 in the Gulf of California region and recorded by the broadband stations of the network of autonomously recording seismographs (NARS?CBaja array). The NARS?CBaja array consists of 19 stations installed in the Baja California peninsula, Sonora and Sinaloa, Mexico. The events reported by the preliminary determinations of epicenters (PDE) catalog within the period of interest have moment magnitudes (M w) ranging between 1.1 and 6.7. We estimated the hypocentral location of these events using P and S wave arrivals recorded by the regional broadband stations of the NARS?CBaja and the RESBAN (Red Sismológica de Banda Ancha) arrays and using a standard location procedure with the HYPOCENTER code (Lienert and Havskov in Seism Res Lett 66:26?C36, 1995) as a preliminary step. To refine the location of the initial hypocenters, we used the shrinking box source-specific station term method of Lin and Shearer (J Geophys Res 110, B04304, 2005). We found that most of the seismicity is distributed in the NW?CSE direction along the axis of the Gulf of California, following a linear trend that, from north to south, steps southward near the main basins (Wagner, Delfin, Guaymas, Carmen, Farallon, Pescadero and Alarcon) and spreading centers. We compared the epicentral locations reported in the PDE with the locations obtained using regional arrival times, and we found that earthquakes with magnitudes in the range 3.2?C5.0?mb differ on the average by as much as 43?km. For the M w magnitude range between 5 and 6.7 the discrepancy is less, differing on the average by about 25?km. We found that the relocated epicenters correlate well with the main bathymetric features of the Gulf.  相似文献   

3.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

4.
“Repeating earthquakes” identified by waveform cross-correlation, with inter-event separation of no more than 1 km, can be used for assessment of location precision. Assuming that the network-measured apparent inter-epicenter distance X of the “repeating doublets” indicates the location precision, we estimated the regionalized location quality of the China National Seismograph Network by comparing the “repeating events” in and around China by Schaff and Richards (Science 303: 1176–1178, 2004; J Geophys Res 116: B03309, 2011) and the monthly catalogue of the China Earthquake Networks Center. The comparison shows that the average X value of the China National Seismograph Network is approximately 10 km. The mis-location is larger for the Tibetan Plateau, west and north of Xinjiang, and east of Inner Mongolia, as indicated by larger X values. Mis-location is correlated with the completeness magnitude of the earthquake catalogue. Using the data from the Beijing Capital Circle Region, the dependence of the mis-location on the distribution of seismic stations can be further confirmed.  相似文献   

5.
Unloaded natural rock masses are known to generate seismic signals (Green et al., 2006; Hainzl et al., 2006; Husen et al., 2007; Kraft et al., 2006). Following a 1,000 m3 mass failure into the Mediterranean Sea, centimeter-wide tensile cracks were observed to have developed on top of an unstable segment of the coastal cliff. Nanoseismic monitoring techniques (Wust-Bloch and Joswig, 2006; Joswig, 2008), which function as a seismic microscope for extremely weak seismic events, were applied to verify whether brittle failure is still generated within this unconsolidated sandstone mass and to determine whether it can be detected. Sixteen days after the initial mass failure, three small-aperture sparse arrays (Seismic Navigation Systems-SNS) were deployed on top of this 40-m high shoreline cliff. This paper analyzes dozens of spiky nanoseismic (?2.2 ≥ M L ≥ ?3.4) signals recorded over one night in continuous mode (at 200 Hz) at very short slant distances (3–67 m). Waveform characterization by sonogram analysis (Joswig, 2008) shows that these spiky signals are all short in duration (>0.5 s). Most of their signal energy is concentrated in the 10–75 Hz frequency range and the waveforms display high signal similarity. The detection threshold of the data set reaches M L ?3.4 at 15 m and M L ?2.7 at 67 m. The spatial distribution of source signals shows 3-D clustering within 10 m from the cliff edge. The time distribution of M L magnitude does not display any decay pattern of M L over time. This corroborates an unusual event decay over time (modified Omori’s law), whereby an initial quiet period is followed by regained activity, which then fades again. The polarization of maximal waveform amplitude was used to estimate spatial stress distribution. The orientation of ellipses displaying maximal signal energy is consistent with that of tensile cracks observed in the field and agrees with rock mechanics predictions. The M L– surface rupture length relationship displayed by our data fits a constant-slope extrapolation of empirical data collected by Wells and Coppersmith (1994) for normal fault features at much larger scale. Signal characterization and location as well as the absence of direct anthropogenic noise sources near the monitoring site, all indicate that these nanoseismic signals are generated by brittle failure within the top section of the cliff. The atypical event decay over time that was observed suggests that the cliff material is undergoing post-collapse bulk strain accommodation. This feasibility study demonstrates the potential of nanoseismic monitoring in rapidly detecting, locating and analyzing brittle failure generated within unconsolidated material before total collapse occurs.  相似文献   

6.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

7.
In this paper, we introduce a new method for estimating the source parameters of moderate earthquakes (M w ~5.0) by modeling short-period teleseismic waveforms. This method uses a grid-search algorithm to minimize misfits between observed data and synthetic seismograms in depth, magnitude, and mechanism domain in a relative high-frequency range of 0.8–2.0 Hz, similar to the traditional cut-and-paste method used in regional modeling (Zhu and Helmberger, Bull Sesimol Soc Am 86:1634–1641, 1996). In this frequency range, a significant challenge is determining the initial P-wave polarity because of a low signal-to-noise ratio (SNR). Therefore we first determine source properties for a master earthquake with a relative strong SNR. Both the travel time and amplitude corrections are developed relative to the reference 1D model along each path used in inverting the master event. We then applied these corrections to other earthquakes clustered in the same area to constrain the initial P polarities. Thus the focal mechanisms can be determined reasonably well. We inverted focal mechanisms for a small set of events beneath Qeshm Island in southern Iran and demonstrate the importance of radiation pattern at short periods.  相似文献   

8.
The Load/Unload Response Ratio (LURR) method is a proposed technique to predict earthquakes that was first put forward by Yin (1987). LURR is based on the idea that when an area enters the damage regime, the rate of seismic activity during loading of the tidal cycle increases relative to the rate of seismic activity during unloading in the months to one year preceding a large earthquake. Since earth tides generally contribute the largest temporal variations in crustal stress, it seems plausible that earth tides would trigger earthquakes in areas that are close to failure (e.g., Vidale et al., 1998). However, the vast majority of studies have shown that earth tides do not trigger earthquakes (e.g., Vidale et al., 1998; Heaton, 1982; Rydelek et al., 1992). In this study, we conduct an independent test of the LURR method, since there would be important scientific and social implications if it were proven to be a robust method of earthquake prediction. Smith and Sammis (2004) undertook a similar study and found no evidence that there was predictive significance to the LURR method. We have repeated calculations of LURR for the Northridge earthquake in California, following both the parameters of X.C. Yin (personal communication) and the somewhat different ones of Smith and Sammis (2004). Though we have followed both sets of parameters closely, we have been unable to reproduce either set of results. Our examinations have shown that the LURR method is very sensitive to certain parameters. Thus it seems likely that the discrepancies between our results and those of previous studies are due to unaccounted for differences in the calculation parameters. A general agreement was made at the 2004 ACES Workshop in China between research groups studying LURR to work cooperatively to resolve the differences in methods and results, and thus permit more definitive conclusions on the potential usefulness of the LURR method in earthquake prediction.  相似文献   

9.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

10.
Towards fully data driven ground-motion prediction models for Europe   总被引:2,自引:2,他引:0  
We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured $V_{s30}$ properties have been selected. Five input parameters were selected: the moment magnitude $M_{W}$ , the Joyner–Boore distance $R_{JB}$ , the focal mechanism, the hypocentral depth, and the site proxy $V_{S30}$ . A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (PGA), peak ground velocity (PGV) and 5 %-damped pseudo-spectral acceleration (PSA) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation ( $\sigma $ ) varies between 0.298 and 0.378 (log $_{10}$ unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils.  相似文献   

11.
A new estimate of the fracture parameters of earthquakes is provided in this paper. By theMuskhelishvili method (1953) a number of basic relations among fracture-mechanics parameters are derived. A scheme is proposed to evaluate the slip weakening parameters in terms of fault dimension, average slip, and rise time, and the new results are applied to 49 events compiled in the earthquake catalogue ofPurcaru andBerckhemer (1982). The following empirical relations are found in the paper: $$\begin{gathered} \frac{{\tau _B - \tau _f }}{{\tau _\infty - \tau _f }} = 2.339 \hfill \\ {{\omega _c } \mathord{\left/ {\vphantom {{\omega _c } {W = 0.113}}} \right. \kern-\nulldelimiterspace} {W = 0.113}} \hfill \\ \log G_c \left( {{{dyne} \mathord{\left/ {\vphantom {{dyne} {cm}}} \right. \kern-\nulldelimiterspace} {cm}}} \right) = 2 \log L (km) + 6.167 \hfill \\ \log \delta _c (cm) = 2 \log L (km) - 1.652 \hfill \\ \end{gathered} $$ whereG c is the specific fracture energy,ω c the size of the slip weakening zone,δ c the slip weakening displacement,τ B ?τ f the drop in strength in the slip weakening zone,τ ?τ f the stress drop,L the fault length, andW the fault width. The investigation of 49 shocks shows that the range of strength dropτ B ?τ f is from several doze to several hundred bars at depthh<400 km, but it can be more than 103 bars ath>500 km; besides, the range of the sizeω c of the strength degradation zone is from a few tenths of a kilometer to several dozen kilometers, and the range of the slip weakening displacementδ c is from several to several hundred centimeters. The specific fracture energyG c is of the order of 108 to 1011 erg cm?2 when the momentM 0 is of the order of 1023 to 1029 dyne cm.  相似文献   

12.
The effect of location errors in the performance of seismicity-based forecasting methods was studied here using one particular binary forecast technique, the Pattern Informatics (PI) technique (Rundle et al., Proc Nat Acad Sci USA 99, 2514–2521, 2002; Tiampo et al., Pure Appl Geophys 159, 2429–2467, 2002). The Southern Californian dataset was used to generate a series of perturbed catalogs by adding different levels of noise to epicenter locations. The PI technique was applied to these perturbed datasets to perform retrospective forecasts that were evaluated by means of skill scores, commonly used in atmospheric sciences. These results were then compared to the effectiveness obtained from the original dataset. Isolated instances of decline of the PI performance were observed due to the nature of the skill scores themselves, but no clear trend of degradation was identified. Dependence on the total number of events in a catalog also was studied, with no systematic degradation in the performance of the PI for catalogs with events in the cases studied. These results suggest that the stability of the PI method is due to the invariance of the clustering patterns identified by the TM metric (Thirumalai and Mountain, Phys Rev A 39, 3563–3573, 1989) when applied to seismicity.  相似文献   

13.
This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371–400, 1996, Bull Earthq Eng 3:1–53, 2005; Bommer et al. in Bull Earthq Eng 1:171–203, 2003; Akkar and Bommer in Seismol Res Lett 81:195–206, 2010), namely: inclusion of a nonlinear site amplification function that is a function of $\text{ V }_\mathrm{S30}$ and reference peak ground acceleration on rock; extension of the magnitude range of applicability of the model down to $\text{ M }_\mathrm{w}$ 4; extension of the distance range of applicability out to 200 km; extension to shorter and longer periods (down to 0.01 s and up to 4 s); and consistent models for both point-source (epicentral, $\text{ R }_\mathrm{epi}$ , and hypocentral distance, $\text{ R }_\mathrm{hyp}$ ) and finite-fault (distance to the surface projection of the rupture, $\text{ R }_\mathrm{JB}$ ) distance metrics. In addition, data from more than 1.5 times as many earthquakes, compared to previous pan-European models, have been used, leading to regressions based on approximately twice as many records in total. The metadata of these records have been carefully compiled and reappraised in recent European projects. These improvements lead to more robust ground-motion prediction equations than have previously been published for shallow (focal depths less than 30 km) crustal earthquakes in Europe and the Middle East. We conclude with suggestions for the application of the equations to seismic hazard assessments in Europe and the Middle East within a logic-tree framework to capture epistemic uncertainty.  相似文献   

14.
Three periods of volcanic activity connected with tectonic events form the geological history of the Valley of Mexico (Mooser 1963, 1969). An igneous rock suite from rhyodacites to andesites (but lacking rhyolites and basalts) can be observed in each period. During the Tertiary epochs — in the Oligo-Miocene and Upper Miocene-Pliocene — we have a more dacitic volcanism, in the Quaternary epoch a more andesitic volcanism. This result was verified by calculating the average of all available and stratigraphically datable chemical analyses byGunn &Mooser (1971) andNegendank (1972). Using the average chemical composition of the Oligo-Miocene, Upper Miocene-Pliocene and Quaternary products the equivalent igneous rocks were computed using theRittmann-norms in theStreckeisen-Q-A-P-F double triangle with the following result (names in parenthesis are those using the classification ofMiddlemost (1973): Quaternary : quartz-latite-andesite (andesite) Upper Miocene-Pliocene : leuco-quartz-latite-andesite (high lime dacite) Oligo-Miocene : leuco-quartz-latite-andesite (high lime dacite) The equal average composition of the two groups of Tertiary volcanic rocks seems to support the theory of a uniform primary andesite magma apart from which of the two possible theories of petrogenesis one favors. The calculated average trace element abundances show high Cr- and Ni-values which suggests that mantle material was involved if we consider the Tertiary products as partial melting products of the lower crust. A more elegant hypothesis seems to be the model ofGunn &Mooser (1971), who consider these volcanic rocks as partial melting products of oceanic tholeiites or their high pressure derivatives in the sense ofRaleigh &Lee (1969).  相似文献   

15.
It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN (Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517–1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The results of this study could be considered as a first step to create permanent seismic noise models for North Africa and Middle East regions.  相似文献   

16.
Recently the equilibrium property of ergodicity was identified in an earthquake fault system (Tiampo et al., Phys. Rev. Lett. 91, 238501, 2003; Phys. Rev. E 75, 066107, 2007). Ergodicity in this context not only requires that the system is stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages when studying their behavior in space and time. In this work we show that this property can be used to identify those regions of parameter space which are stationary when applied to the seismicity of two naturally-occurring earthquake fault networks. We apply this measure to one particular seismicity-based forecasting tool, the Pattern Informatics index (Tiampo et al., Europhys. Lett. 60, 481–487, 2002; Rundle et al., Proc. National Acad. Sci., U.S.A., Suppl. 1, 99, 2463, 2002), in order to test the hypothesis that the identification of ergodic regions can be used to improve and optimize forecasts that rely on historic seismicity catalogs. We also apply the same measure to synthetic catalogs in order to better understand the physical process that affects this accuracy. We show that, in particular, ergodic regions defined by magnitude and time period provide more reliable forecasts of future events in both natural and synthetic catalogs, and that these improvements can be directly related to specific features or properties of the catalogs that impact the behavior of their spatial and temporal statistics.  相似文献   

17.
Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30?years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (Le Mouélic and Adragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734–744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.  相似文献   

18.
Rapid magnitude estimate procedures represent a crucial part of proposed earthquake early warning systems. Most of these estimates are focused on the first part of the P-wave train, the earlier and less destructive part of the ground motion that follows an earthquake. Allen and Kanamori (Science 300:786–789, 2003) proposed to use the predominant period of the P-wave to determine the magnitude of a large earthquake at local distance and Olivieri et al. (Bull Seismol Soc Am 185:74–81, 2008) calibrated a specific relation for the Italian region. The Mw 6.3 earthquake hit Central Italy on April 6, 2009 and the largest aftershocks provide a useful dataset to validate the proposed relation and discuss the risks connected to the extrapolation of magnitude relations with a poor dataset of large earthquake waveforms. A large discrepancy between local magnitude (ML) estimated by means of $\tau_p^{{\rm max}}$ evaluation and standard ML (6.8 ± 1.5 vs. 5.9 ± 0.4) suggests using caution when ML vs. $\tau_p^{{\rm max}}$ calibrations do not include a relevant dataset of large earthquakes. Effects from large residuals could be mitigated or removed introducing selection rules on τ p function, by regionalizing the ML vs. $\tau_p^{{\rm max}}$ function in the presence of significant tectonic or geological heterogeneity, and using probabilistic and evolutionary methods.  相似文献   

19.
—Systematic variations of the seismic radial anisotropy ξ to depths of 200–250 km in North America and Eurasia and their surroundings are related to the age of continental provinces, and typical depth dependences of ξ R are determined. The relative radial anisotropy ξ R in the mantle lithosphere of Phanerozoic orogenic belts is characterized by ν SH > ν SV , with its maximum depth of about 70 km, on the average, while beneath old shields and platforms, it exhibits a maximum deviation from ACY400 model (Montagner and Anderson, 1989) at depths of about 100 km with ν SV ν SH signature. An interpretation of the observed seismic anisotropy by the preferred orientation of olivine crystals results in a model of the mantle lithosphere characterized by anisotropic structures plunging steeply beneath old shields and platforms, compared to less inclined anisotropies beneath Phanerozoic regions. This observation supports the idea derived from petrological and geochemical observations that a mode of continental lithosphere generation may have changed throughout earth's history.  相似文献   

20.
We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH?=?7.8 and MIW?=?7.6 considering surface wave and moment magnitude, respectively) than the value M?=?8.2 listed in the considered catalog. These values are more in agreement with the value M S?=?7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH?=?6.9 and MIW?=?6.8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号