首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transient model, hereafter referred to as ROM-TM, was developed to quantify river ecosystem metabolic rates and reaeration rates from field observation of changes in dissolved O2 (DO) and the ratio of 18O to 16O in DO (δ18O-DO). ROM-TM applies an inverse modeling approach and is programmed using MATLAB. Parameters describing photosynthesis, ecosystem respiration, gas exchange, and isotopic fractionation, such as maximum photosynthetic rate (P m ), photosynthetic efficiency parameter (a), respiration rate at 20 °C (R 20 ), gas exchange coefficient (K), respiration isotopic fractionation factor (a R ), and photorespiration coefficient (β R ), can be abstracted by minimizing the sum of square errors between the fitted data and the observed field data. Then DO and δ18O-DO time series can be reconstructed using estimated parameters and input variables. Besides being capable of teasing apart metabolic processes and gas exchange to provide daily average estimates of metabolic parameters at the ecosystem scale, ROM-TM can be used to address issues related to light including light saturation phenomena at the ecosystem level, the effect of cloud cover on the metabolic balance, and photorespiration. Error and uncertainty analysis demonstrates that ROM-TM is stable and robust for the random errors of DO time series. The photosynthetic parameters P m and a are more sensitive than other parameters to lower-resolution time series data.  相似文献   

2.
The structurally adequate model of the geomagnetosphere consists of the following modules: A. Bow shock as a source of power for magnetospheric processes. B. The generation of magnetospheric convection. C. The plasma pressure distribution in the magnetosphere and electron-proton precipitations into the ionosphere. D. The magnetosphere-ionosphere coupling. Field-aligned currents. Essentially, each module presented in an analytical form is a model of a particular process described in physical terms. It has an input and output to couple with other modules. When combined, the modules comprise a single large physically adequate model describing a phenomenon in such a way that we understand its essence and contribution of each physical process into the overall picture.  相似文献   

3.
Rock masses contain ubiquitous multiscale heterogeneities, which (or whose boundaries) serve as the surfaces of discontinuity for some characteristics of the stress state, e.g., for the orientation of principal stress axes. Revealing the regularities that control these discontinuities is a key to understanding the processes taking place at the boundaries of the heterogeneities and for designing the correct procedures for reconstructing and theoretical modeling of tectonic stresses. In the present study, the local laws describing the refraction of the axes of extreme principal stresses T 1 (maximal tension in the deviatoric sense) and T 3 (maximal compression) of the Cauchy stress tensor at the transition over the elementary area n of discontinuity whose orientation is specified by the unit normal n are derived. It is assumed that on the area n of discontinuity, frictional contact takes place. No hypotheses are made on the constitutive equations, and a priori constraints are not posed on the orientation on the stress axes. Two domains, which adjoin area n on the opposite sides and are conventionally marked + and ?, are distinguished. In the case of the two-dimensional (2D) stress state, any principal stress axis on passing from domain ? to domain + remains in the same quadrant of the plane as the continuation of this axis in domain +. The sign and size of the refraction angle depend on the sign and amplitude of the jump of the normal stress, which is tangential to the surface of discontinuity. In the three-dimensional (3D) case, the refraction of axes T 1 and T 3 should be analyzed simultaneously. For each side, + and ?, the projections of the T 1 and T 3 axes on the generally oriented plane n form the shear sectors S + and S ?, which are determined unambiguously and to whose angular domains the possible directions p + and p ? of the shear stress vectors belong. In order for the extreme stress axes T 1 + ,T 3 + and T 1 ? , T 3 ? to be statically compatible on the generally oriented plane n, it is required that sectors S + and S ? had a nonempty intersection. The direction vectors p + and p ? are determined uniquely if, besides axes T 1 ? , T 3 ? and T 1 + , T 3 + , also the ratios of differential stresses R + and R ? (0 ≤ R ± ≤ 1) are known. This is equivalent to specifying the reduced stress tensors T R + and T R ? The necessary condition for tensors T R + and T R ? being statically compatible on plane n is the equality p + = p ?. In this paper, simple methods are suggested for solving the inverse problem of constructing the set of the orientations of the extreme stress axes from the known direction p of the shear stress vector on plane n and from the data on the shear sector. Based on these methods and using the necessary conditions of local equilibrium on plane n formulated above, all the possible orientations of axes T 1 + , T 3 + are determined if the projections of axes T 1 ? , T 3 ? axes on side — are given. The angle between the projections of axes T 1 + , T 1 ? and/or T 3 + , T 3 ? on the plane can attain 90°. Besides the general case, also the particular cases of the contact between the degenerate stress states and the special position of plane n relative to the principal stress axes are thoroughly examined. Generalization of the obtained results makes it possible to plot the local diagram of the orientations of axes T 1 + , T 3 + for a given sector S ?. This diagram is a so-called stress orientation sphere, which is subdivided into three pairs of areas (compression, tension, and compression-extension). The tension and compression zones cannot contain the poles of T 3 + and T 1 + axes, respectively. The compression-extension zones can contain the poles of either T 1 + or T 3 + axis but not both poles simultaneously. In the particular case when the shear stress vector has a unique direction p ? on side ?, the areas of compression-extension disappear and the diagram is reduced to a beach-ball plot, which visualizes the focal mechanism solution of an earthquake. If area n is a generally oriented plane and if the orientation of the pairs of the statically compatible axes T 1 ? , T 3 ? and T 1 + , T 3 + is specified, then, the stress values on side + are uniquely determined from the known stress values on side ?. From the value of differential stress ratio R ?, one can calculate the value of R +, and using the values of the principal stresses on side ?, determine the total stress tensor T + on side +. The obtained results are supported by the laboratory experiments and drilling data. In particular, these results disclose the drawbacks of some established notions and methods in which the possible refraction of the stress axes is unreasonably ignored or taken into account improperly. For example, it is generally misleading to associate the slip on the preexisting fault with the orientation of any particular trihedron of the principal stress axes. The reconstruction should address the potentially statically compatible principal stress axes, which are differently oriented on opposite sides of the fault plane. The fact that, based on the orientation of the intraplate principal stresses at the base of the lithosphere, one cannot make a conclusion on the active or passive influence of the mantle flows on the lithospheric plate motion is another example. The present relationships linking the stress values on the opposite sides of the fault plane on which the orientations of the principal stress axes are known demonstrate the incorrectness of the existing methods, in which the reduced stress tensors within the material domains are reconstructed without allowance for the dynamic interaction of these domains with their neighbors. In addition, using the obtained results, one can generalize the notion of the zone of dynamical control of a fault onto the case of the existence of discontinuities in this region and analyze the stress transfer across the system of the faults.  相似文献   

4.
5.
The three-dimensional nonstationary theoretical model of the concentrations and temperatures of electrons and ions in the ionospheric F region and plasmasphere at low and middle latitudes is used to study variations in the concentration NmF2 and height hmF2 of the ionospheric F2 layer under the action of the plasma zonal drift in the direction geomagnetic west-geomagnetic east perpendicularly to the electric E and geomagnetic B fields. The calculated and measured values of NmF2 and hmF2 for 16 ionospheric sounding stations during the quiet geomagnetic period on March 28–29, 1964 at low solar activity are compared. This comparison made it possible to correct the input parameters of the model: [O] from the NRLMSISE-00 model and the meridional component of the neutral wind velocity from the HWW90 model. It is shown that the nighttime NmF2 values decrease up to twice at low solar activity in the low-latitude ionosphere, and the hmF2 values change by up to 16 km, if the plasma zonal E×B drift is not taken into account. Under the daytime conditions, the influence of the plasma zonal E×B drift on NmF2 can be neglected.  相似文献   

6.
Ground motion prediction equations (GMPEs) have a major impact on seismic hazard estimates, because they control the predicted amplitudes of ground shaking. The prediction of ground-motion amplitudes due to mega-thrust earthquakes in subduction zones has been hampered by a paucity of empirical ground-motion data for the very large magnitudes (moment magnitude (M) $>$ 7) of most interest to hazard analysis. Recent data from Tohoku M9.0 2011 earthquake are important in this regard, as this is the largest well-recorded subduction event, and the only such event with sufficient data to enable a clear separation of the overall source, path and site effects. In this study, we use strong-ground-motion records from the M9 Tohoku event to derive an event-specific GMPE. We then extend this M9 GMPE to represent the shaking from other M $>$ 7 interface events in Japan by adjusting the source term. We focus on events in Japan to reduce ambiguity that results when combining data in different regions having different source, path and site effect attributes. Source levels (adjustment factors) for other Japanese events are determined as the average residuals of ground-motions with respect to the Tohoku GMPE, keeping all other coefficients fixed. The mean residuals (source terms) scale most steeply with magnitude at the lower frequencies; this is in accord with expectations based on overall source-scaling concepts. Interpolating source terms over the magnitude range of 7.0–9.0, we produce a GMPE for large interface events of M7–M9, for NEHRP B/C boundary site conditions (time-averaged shear-wave velocity of 760 m/s over the top 30 m) in both fore-arc and back-arc regions of Japan. We show how these equations may be adjusted to account for the deeper soil profiles (for the same value of $\hbox {V}_\mathrm{S30})$ in western North America. The proposed GMPE predicts lower motions at very long periods, higher motions at short periods, and similar motions at intermediate periods, relative to the simulation-based GMPE model of Atkinson and Macias (2009) for the Cascadia subduction zone.  相似文献   

7.
The time derivative (d H/dt) of the geomagnetic field horizontal component (H) for seven intervals of high geomagnetic activity in 2003–2005 has been calculated, based on the data of Alma-Ata, Novosibirsk, and Irkutsk observatories, in order to estimate the probability of appearance of geomagnetically induced current (GIC), the value of which is linearly dependent on d H/dt, in power lines on the territory of Kazakhstan. The distributions of the H and d H/dt directions have been constructed; in this case it was most interesting that these distributions were narrow and extended along the magnetic meridian for Alma-Ata and were wider angular for Novosibirsk and Irkutsk. It has been indicated that large H values, determining significant GIC values, took place at a sudden commencement of strong storms, which had a character of a pulsed disturbance of the geomagnetic field, and during large-amplitude geomagnetic field pulsations. The duration of the periods of large |d H/dt| values exceeding the threshold (30 nT/min), when GIC could cause unwanted consequences in power circuits, has been determined.  相似文献   

8.
The goal of the present work is to identify high-seismicity (High) intersections of morphostructural lineaments within the Mediterranean mountain belts (the Alps, Apennines, Balkanides, Dinarides, and the Carpathians). The intersections of lineaments, with the lineaments being boundaries of crustal blocks, were determined by morphostructural zoning. The epicenters of M ≥ 6.0 earthquakes and the intersections were found to be related. We used the KORA-3 recognition algorithm to identify the High intersections, where M >- 6.0 earthquakes can occur, separately for each mountainous country. Most of the High intersections identified here are located on higher-rank lineaments that separate major crustal blocks. The High intersections typically involve contrasting neotectonic movements and an increased crustal fragmentation. The results of this study point to a high seismic potential for the regions studied: we have identified many High intersections where no large earthquakes have yet been recorded.  相似文献   

9.
Sensitivity study of the airice drag coefficient C Dai is presented with an iceocean coupled model for the Sea of Okhotsk. The C Dai?×?103 value is varied from 2 to 5 based on the direct measurements in the region. The maximum volume transport of the East Sakhalin Current and the mean sea ice velocity were intensified as C Dai increased. The sensitivity experiment with the icewater drag coefficient C Diw showed that the East Sakhalin Current volume transport is hardly affected by C Diw but significantly intensified by C Dai. While the ice drift in the off-ice-edge direction was intensified by the increase in C Dai and the decrease in C Diw, the ice edge location was nearly unchanged. This was due to melting caused by the relatively warm water inflow from the North Pacific. That is, sea ice extent in the region is strongly influenced by melting caused by a large iceocean heat transfer. In the active melting regions, the iceocean heat transfer of more than 100 W/m2 occurred even in mid-winter. This is the same order as the cooling by air in winter, and a heat insulation capacity of sea ice is weakened in such regions.  相似文献   

10.
The variations in the electron number density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift in the geomagnetic west-geomagnetic east direction perpendicularly to the electric (E) and geomagnetic (B) fields during a geomagnetically quiet period on December 7, 1989, at high solar activity have been studied based on a three-dimensional nonstationary theoretical model of electron number densities and temperatures in the ionospheric F region. Calculated and measured NmF2 values for 12 low-latitude ionospheric sounding stations have been compared. When the zonal E × B plasma drift is ignored, the NmF2 values become smaller by up to a factor of 3 under nighttime conditions in the low-latitude ionosphere. The average effect of the zonal E × B plasma drift on NmF2 in the low-latitude ionosphere is larger during winter nights than under summer nighttime conditions.  相似文献   

11.
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector β that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation γθ, where γ is an interpolation matrix and θ is a stochastic vector of parameters. Vector θ has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(γθ) written in terms of the approximate inputs is in error with respect to the same model function written in terms of β, f(β), which is assumed to be nearly exact. The difference f(β) − f(γθ), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate θ and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(β) and f(γθ) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis.  相似文献   

12.
Monitoring the water balance of Lake Victoria, East Africa, from space   总被引:3,自引:0,他引:3  
Sean Swenson  John Wahr   《Journal of Hydrology》2009,370(1-4):163-176
Using satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003–2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as , while altimetric data show that lake levels in some large lakes dropped by as much as 1–2 m. The largest declines occurred in Lake Victoria, the Earth’s second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake’s decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria’s water balance to within . The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a time series of Lake Victoria discharge with an rms error of about .  相似文献   

13.
The design of a non-linear real-time expert water management telematics system is proposed, in order to minimize the waste of 15% to 40% of the water supplies in the ground pipe networks, because of the leakage. This expert system will work by using the step testing method, and it will be therefore possible to determine the approximate location of leakage for every big urban area. Furthermore, ARC/INFO Geographic Information Systems (GIS) working under the UNIX-operating system in X-Windows are used in the Workstation of the Central Station (CS) in order to handle data. The proposed real-time expert system will be non-linear in its responses and a part of the programming language will be fourth generation real-time software working under real-time logic.  相似文献   

14.
Results obtained by means of an ultrasonic current meter in the plume of the Rhone river are summarized as follows:
  1. Currents of Rhone river water entering the lake were clearly discernible up to a distance of about 1 km from the river mouth. The interflow was observed at depth of 10 to 30 m.
  2. Interflow velocities decreased with increasing distance from the river mouth: from 40cm/s at a distance of 350 m to about 15 cm/s at 1 km.
  3. Short-term variations of current velocities and directions documented the highly turbulent nature of the interflow.
  4. The entering river water (inflow direction to the NNW) interfered with a persisting northeastward current of the lake water. At a distance of 1–2 km from the mouth the interflow gradually assumed the same direction, possibly due to deflection by Coriolis forces.
  5. Current velocities showed considerable variations within a time scale in the order of hours at the same measuring position. The reasons for these fluctuations remain unclear. Possible causes may be lateral oscillations of the entering river water or its deviation by river mouth bars during periods of reduced river discharge. Variations of the discharge alone cannot explain these current fluctuations.
  相似文献   

15.
The use of submersed macrophyte tissue δ 15N to quantify the level of WWTP effluent use in a highly urbanized and agricultural river was evaluated using several methods. Macrophytes, NH4 + and NO3 ? were collected by canoe along two 10 km reaches of river, upstream and downstream of two major municipal WWTPs over 3 years. NH4 + decreased in concentration while δ 15N–NH4 + increased as a function of distance downstream of both WWTPs, changing in one survey from 13 to 31 ‰ over 1 km. This increase is attributed to the combined effects of volatilization, nitrification and uptake. While NO 3 ? concentrations increased downstream of the WWTP over one of the survey reaches, δ 15N–NO 3 ? showed no prominent trend with distance at either. Macrophyte tissue δ 15N increased with distance downstream of both WWTPs, with a slope not significantly different from that of δ 15N–NH4 + suggesting that macrophytes incorporate effluent NH4 + as their main N source in those areas. However, mixing models suggest that towards the end of the reach, where source separation is distinct, macrophytes may utilize background NO 3 ? . Our study indicates the difficulty of deriving precise estimates of effluent use by macrophytes in a system where the δ 15N of the effluent changes rapidly. It also illustrates the utility of macrophytes in describing those changes where the effluent is too attenuated to allow for direct isotopic analysis.  相似文献   

16.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

17.
The characteristics of seismicity in the near vicinity of five large water reservoirs and three large waterfalls from different regions of the Earth are considered. It is found that in some cases induced seismicity manifests itself during the filling of reservoirs at quite large depths: in the lower crust and even in the upper mantle. There is negative correlation between the maximum magnitudes Мmax of the earthquakes recorded near water reservoirs and waterfalls and the water discharge in these objects (V p ). The largest values of Мmax are characteristic of earthquakes that occurred near Sarez Lake (Tajikistan) and the Koyna Reservoir (India), which have the lowest V p ; in contrast, the smallest magnitudes are reported for earthquakes in the areas of the Khone Falls (Laos) and Niagara Falls (United States, Canada), where there are no large artificial water reservoirs, but huge water discharge takes place. The available data indicate that permanent vibration caused by falling water reduces the level of seismicity.  相似文献   

18.
19.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

20.
Turbidity measurements by foreward scattering nephelometer have been regularly conducted on the north basin of Lake Lugano (Switzerland/Italy) since September 1992. In order to determine mass concentrations from these data, both, in-situ and laboratory calibration experiments have been performed in November and December 1992 on suspended matter of the hypolimnion. Results show:
  1. Mass concentration/turbidity ratios are different in the two turbidity zones examined due to variation in the optical signature of the suspended matter.
  2. Laboratory calibrations using suspended matter originating from the water depths of interest give representative results provided that physical and chemical alterations occuring during the particle transfer process remain negligible.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号