首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A fuzzy matter-element model, combined with the entropy weight of an index, has been used as an evaluation method to achieve a comprehensive assessment and analysis of the operational efficiency of wastewater treatment plants (WWTPs). The feasibility of the method had been validated based on actual operational data and instance from eight WWTPs located in a city in Northern China. According to the results of the comprehensive evaluation, the operational efficiency of the WWTP using an anaerobic/anoxic/oxic process was generally better than other wastewater treating technologies. And especially, the removal efficiencies of nitrogen and phosphorus pollutants were much higher for the process, which suits well the actual operational situation of Chinese WWTPs. Total nitrogen (TN) removal rate and the productive quantity of the excess sludge cake were identified as important factors in the evaluation of the operational efficiency for a WWTP. So the operation level of WWTP could be improved by increasing the TN removal rate and decreasing the excess sludge cake quantity. The developed method can evaluate and analyze the operational efficiency scientifically and objectively, and the evaluation results can be used to guide the construction, operation and management of WWTPs in The Three Gorge reservoir district of China.  相似文献   

2.
Slaughterhouse wastewater is one of the main sources of environmental pollutants, containing a high amount of organic matter (chemical oxygen demand (COD), biochemical oxygen demand (BOD)), total nitrogen (TN), total suspended solids (TSS), total phosphorus (TP), grease, and oil. The main aim of the present research is optimizing the coagulation–flocculation process and examining the effects of experimental factors with each other, for example, pH, the concentration of two different coagulants (FeCl3 and alum), rapid mixing rate, and settling time. Therefore, it is aimed to treat slaughterhouse wastewater using the coagulation–flocculation process with the optimization of the response surface methodology (RSM). COD, turbidity, and suspended solids (SS) of the treated wastewater are chosen as the response variables. Furthermore, the optimal conditions for three responses are acquired by employing the desirability function approach. When the experimental results of two coagulants are compared, it is observed that the alum coagulant gave better results for the three responses. The alum coagulant utilized in the present research is able to increase COD, SS, and turbidity removal efficiency by 75.25%, 90.16%, and 91.18%, respectively. It is possible to optimize coagulation–flocculation by utilizing the RSM analysis, which proves that coagulation can pre‐treat slaughterhouse wastewater.  相似文献   

3.
Moringa oleifera (MO) seed extract coupled with electrocoagulation (EC) was used to remove fluoride from water. Different MO extract volumes (5.0, 12.5, and 25.0 mL of MO extract per water liter) were coupled with EC, using aluminum electrodes at different current density values (J = 0.7, 2.0, and 3.3 mA/cm2) and different electrode separations (1.0, 2.0, and 4.0 cm), tested in batch and recirculation experiments. Control experiments using MO extract and EC alone achieved 5% and 54% water defluoridation, respectively. Best experimental batch conditions were achieved using 12.5 mL of MO extract followed by EC (3.3 mA/cm2) with a 1.0 cm electrode separation, producing >90% fluoride removal. Recirculation experiments with the EC reactor were performed with DI water and tap water using 1.0 cm electrode separation, 12.5 mL of MO extract and different current densities. More than 90% fluoride removal was achieved with the EC/MO process, using 3.3 mA/cm2, in both DI and tap water after 30 and 60 min, respectively. An energy consumption index (ECI) was developed, which showed that 1.51 and 0.67 W/h/mg were achieved for batch experiments of EC alone and EC/MO extract, respectively. For EC/MO extract, recirculation experiments with tap and DI water resulted in 0.35 and 0.22 W/h/mg, respectively. A cost analysis showed that $0.18 will be needed to treat one cubic meter of water.  相似文献   

4.
5.
Agricultural biomass is proven ecofriendly and effective adsorbent for the remediation of contaminants from wastewater. Here, rice husk biochar (600 °C) prepared by a one-step pyrolysis method is used for the remediation of different contaminants in real samples. An onsite biofilter unit is fabricated with parallel trenches of different layers of coconut coir and biochar and is used as a biofiltration unit. The efficiency of the designed unit is assessed for the removal of different contaminants in pilot-scale experiments. Results show that removal efficiency varies from metal to metal and ranges from 5.52% to 90.76% using the biofilter unit. Fourier-transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis, carbon, hydrogen, nitrogen, and Brunauer–Emmett–Teller analysis before and after the adsorption represent the changes in the morphology and surface functionalization of the biochar. Results indicate that the designed biofilter unit could also be used as a promising agent for the remediation of pharmaceutical and other emerging contaminants from wastewater.  相似文献   

6.
Optically stimulated luminescence (OSL) dating was performed on Late Quaternary deltaic sequences from a 55-m-long core sampled from the Nakdong River estuary, Korea. OSL ages obtained from chemically separated fine (4–11 μm) and coarse (90–212 μm) quartz grains ranged from 29.4 ± 2.6 to 0.4 ± 0.04 ka, revealing clear consistency between the grain-size fractions. The De values from the standardized growth curve (SGC) are consistent with those from the single-aliquot regenerative-dose (SAR) procedure, which suggests that the SGC is valid for the Nakdong deltaic sediments. The 14C ages of shells and wood fragments ranged from 11 to 2.9 ka, demonstrating reasonable agreement with the OSL ages, within the error range. However, the limited number and random sampling interval of the 14C age data (10 ages) result in a simple linear and exponential trend in the depth–age curve. In contrast, OSL ages obtained by high-resolution sampling show down-section variations in the depth–age curve, indicating the occurrence of rapid changes in sedimentation rate. It is suggested that the high-sampling-resolution OSL ages provide a more realistic and detailed depth–age curve and sedimentation rate. The Nakdong deltaic sediments were divided into five units based on sedimentation rate. The lowest (unit 5) shows a break in sedimentation between the last glacial maximum (LGM) and the Holocene. The sedimentation rate increased in units 4 and 3, presumably corresponding to the early to middle Holocene sea level rise and high stand. Unit 2 shows a gradually decreasing sedimentation rate following the regression of the shoreline, until about 2 ka. The progradation of the Nakdong River delta resulted in the rapid accumulation of unit 1 during the last 2000 years.  相似文献   

7.
The magnetic storm on November 2004 was characterized by a high solar wind pressure and thus offers a unique opportunity to test the Hill–Siscoe formula (H–S) for the polar cap potential (PCP). To estimate the polar cap potential, we use the Weimer Statistical Convection Model (WCM), and the Assimilative Mapping of Ionospheric Electrodynamics Model (AMIE), based on ingestion of a number of data sets. H–S is in excellent agreement with WCM, and with AMIE during times when DMSP is used in the latter. The implication is that the AMIE conductivity model yields conductivities that are too high by a factor of 2–3. Both H–S and WCM display saturation effects, although WCM is more severe. The two methods track well until an IEF of about 20 mV/m occurs, where H–S continues to increase while WCM levels off. Even at high electric field values, the pressure increases the denominator of the H–S formula by 60%, keeping the potential lower than its saturation value. There are several H–S points above 250 kV, even up to 400 kV, that are not found in WCM and occur right after a rapid transition from Bz north to south. For Bz north, we find evidence for a saturation effect on the PCP at large IEF, little effect as a function of solar wind velocity, and an increase of the PCP with increasing pressure. This seems to rule out viscous interaction but may involve geometric changes in the high-altitude polar cusp that affect recombination there for Bz north.  相似文献   

8.
Protein digestibility was determined via two feeding trials in glass aquaria by the indicator (Chromium oxide) method using a mixture of shrimp powder with oil cake and wheat bran respectively (1: 1 W/W) as food. Analyses of feed were made to calculate the crude protein, carbohydrate, lipid and ash contents. Feces were analysed to determine their total nitrogen and chromium oxide. Protein digestibility was studied in relation to salinity of the medium size and weight of the fish body. The apparent digestibility of crude protein of a corresponding die has shown that 1st: Younger fish do possess a lower capability of protein digestion than fish having a medium weight and medium size; 2nd: Older fish with a high weight and large size exhibit no improvement in efficiency to digest the food protein, though their weight and size are significantly greater than those of middle weight and medium size fish; 3rd: The replacement of oil cake by wheat bran decreases the protein digestibility of shrimp powder mixture with them; 4th: A salinity (NaCl) of the aquatic medium at or above 3 g/l depletes the protein digestibility when fish of the same size were experimented with; but a salinity up to 2 g/l does not result in a significant decrease in the protein digestion rate.  相似文献   

9.
Micropollutants cover a variety of compounds that mainly originate from the pharmaceutical and agricultural sectors. Even at trace concentrations, the discharge of micropollutants into water bodies pose a serious threat to the environment and human health. Their removal from wastewaters at treatment plants before their discharge into the environment has become one of the leading topics of research. Physical, chemical, and biological treatment methods have been listed in the literature for efficient removal of a variety of pollutants. In this study, seven micropollutants, namely 4‐tert‐octylphenol, atrazine, 2,4,6‐trichlorophenol, fluoxetine, estrone, penconazole, and di‐n‐octyl phthalate, are spiked into municipal simulated synthetic wastewater and treated by a laboratory‐scale electrooxidation (EO) system using oxidized titanium and graphite electrode as anode and cathode, respectively. Sensitive determination of the selected micropollutants by gas chromatography–mass spectrometry (GC‐MS) before and after treatment is performed after their pre‐concentration using an eco‐friendly switchable solvent liquid‐phase microextraction method (SSLPME). The pH value, applied current, and reaction period are optimized to enhance the removal efficiency of micropollutants. Results show that the highest removal efficiency of all micropollutants is obtained at pH 3, 20 min reaction period, and 3 A applied current. The operational costs are also investigated in this study.  相似文献   

10.
A flow of key information links marine spatial planning (MSP) and oil spill risk analysis (OSRA), two distinct processes needed to achieve true sustainable management of coastal and marine areas. OSRA informs MSP on areas of high risk to oil spills allowing a redefinition of planning objectives and the relocation of activities to increase the ecosystem’s overall utility and resilience. Concomitantly, MSP continuously generates a large amount of data that is vital to OSRA. The Environmental Sensitivity Index (ESI) mapping system emerges as an operational tool to implement the MSP–OSRA link. Given the high level of commonalities between ESI and MSP data (both in biophysical and human dimensions), ESI tools (both paper maps and dynamic GIS-based product) are easily developed to further inform MSP and oil spill risk management. Finally, several other benefits from implementing the MSP–OSRA link are highlighted.  相似文献   

11.
Abstract

Mosul Dam is one of the biggest hydraulic structures in Iraq. Its storage capacity is 11.11 × 109 m3 at a maximum operation level of 330 m a.s.l. The dam became operational in 1986 and no survey has been conducted to determine its storage capacity and establish new operational curves since this date. A topographic map of scale 1:50 000 dated 1983 was converted into triangulated irregular network (TIN) format using the ArcGIS program to evaluate the operational curves. Then the reservoir was surveyed in 2011 to establish the reduction in its storage capacity and to develop new operational curves. The results indicated that the reduction in the storage capacity of the reservoir was 14.73%. This implies that the rate of sedimentation within the reservoir was 45.72 × 106 m3 year?1. These results indicate that most of the sediment was deposited within the upper zone of the reservoir where the River Tigris enters the reservoir.

Editor D. Koutsoyiannis

Citation Issa, E.I., Al-Ansari, N., and Knutsson, S., 2013. Sedimentation and new operational curves for Mosul Dam, Iraq. Hydrological Sciences Journal, 58 (7), 1456–1466.  相似文献   

12.
Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL−1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL−1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.  相似文献   

13.
Optimizing a pumping system in the wastewater treatment process by improving its operational schedules is presented. The energy consumption and outflow rate of the pumping system are modeled by a data-driven approach. A mixed-integer nonlinear programming (MINLP) model containing data-driven components and pump operational constraints is developed to minimize the energy consumption of the pumping system while maintaining the required pumping workload. A greedy electromagnetism-like (GEM) algorithm is designed to solve the MINLP model for optimized operational schedules and pump speeds. Three computational cases are studied to demonstrate the effectiveness of the proposed data-driven modeling and GEM algorithm. The computational results show that significant energy saving can be obtained.  相似文献   

14.
Playa-like sediments from the Hajar Mountain range in northern Oman (22.83°N, 59.00°E; 1050 m asl) document variations of the paleoenvironmental and paleoclimate conditions over the last 20 ka. Based on high-resolution sediment sampling and their OSL dating, sedimentation rates were calculated and used as a proxy for paleorainfall. The results show that the Glacial to Lateglacial was characterized by arid conditions with a following transitional period of even less rainfall. At 10.5 ka, sedimentation rates increases abruptly, indicating the onset of the early Holocene humid period (EHHP). Rainfall reaches its maximum at 9–8 ka (EHHP-2) and a decreasing sedimentation rate after 8 ka characterizes the arid period of the middle to late Holocene. Variations of the hydrological regime are associated with the intensity of the boreal summer Indian monsoon and its related position of the ITCZ. For the onset of the EHHP, a northerly shift of the ITCZ is postulated, thus confirming earlier results from the southern Arabian Peninsula.  相似文献   

15.
In the present research, laundry wastewater treatment is studied using the electrocoagulation/electroflotation process. For the optimization of treatment conditions such as electrode type (Al–Al, Al–Fe, Fe–Fe, and Fe–Al), initial pH (5–9), current (0.54–2.16 A), and application time (15–60 min), response surface methodology is used. Removal efficiencies of chemical oxygen demand (COD), color, anionic surfactant, microplastic, and phosphate are studied. It is determined that the most effective removal is obtained with 2.16 A current, pH 9, and 60 min reaction time using Fe–Al electrode. Here, 91%, 94%, 100%, and 98% removal efficiencies are achieved for COD, surfactant, color, and microplastic, respectively. The operating cost of the combined process is calculated as $1.32 m?3 for the optimum removal parameters. The adsorption kinetics study shows that the removal follows second‐order kinetics. The laboratory‐scale test results indicate that the electrocoagulation/electroflotation process is feasible for the treatment of laundry wastewater.  相似文献   

16.
In Brazil, where reefs occur in markedly turbid environments, the relationship between sedimentation/organic matter and corals is poorly known. Thus, the ex situ effects of sediment with and without organic matter over the ΔF/Fm and physical state of Mussismilia braziliensis were analyzed. The ΔF/Fm and coral physical state, evaluated through the susceptibility index to sedimentation (SI), were measured in seven colonies exposed to sedimentation (0–450 mg cm−2 day−1) free of organic matter after 45 days of exposure, and in 12 colonies exposed to sedimentation (0–500 mg cm−2 day−1) with organic matter content (10%), in which case ΔF/Fm was measured after 72 h and SI after 120 h. In both cases there were effects of increasing sedimentation on the SI with no effect on ΔF/Fm. Despite the tolerance to high sedimentation rates shown by this coral, we noted that the presence of organic matter might reduce its tolerance to sedimentation stress.  相似文献   

17.
A single bioaugmentation reactor and a side-stream gaslift membrane bioreactor combined with bioaugmentation are conducted to treat real wastewater from a centralized piggery slaughterhouse in Vietnam. The bioaugmented reactor is inoculated with heterotrophic microorganisms (Bacillus sp.) isolated from piggery slaughterhouse wastewater. The results of a single bioaugmentation experiment show high removal efficiency of chemical oxygen demand (COD) (84.8%–97.5%) and total nitrogen (TN) (69.9%–87.2%) at loading rates of 1.28–3.89 and 0.14–0.37 kg m−3 d−1, respectively. The combined system demonstrates a significantly higher TN removal efficiency (89.0%–96.1%) (p < 0.001), more stable flux (36.0–38.4 L m−2 h−1), and transmembrane pressure (0.95–1.05 bar), and better capacity of separation of solid–liquid phases compared to the single bioaugmentation. High COD and TN removal efficiency is possibly due to assimilation and simultaneous nitrification and denitrification processes. The results of this study also indicate the feasibility and propitious efficiency of the bioaugmented gaslift membrane bioreactor for piggery slaughterhouse wastewater treatment.  相似文献   

18.
In this study, domestic wastewater was used as the electrolyte. The work was carried out with an up-flow tubular reactor, made of stainless steel that was used as cathode, while the anode electrode material was aluminum and varying values of flow regime (25, 50, 75 and 100 mL/s for continuous system), initial pH value (5, 6, 7 and 7.8) and current intensity (10, 15 and 20 A) were applied. For domestic wastewater with natural pH, the effluent pH was >9 in the batch system, while in the continuous system the pH was 8–8.5. Likewise, while the effluent temperature was up to 60°C in the batch system, it was at most 35°C in the continuous system. However, the energy consumption values in the continuous system were considerably lower compared with the batch system. At a current intensity of 10 A, 80 kWh of energy per unit volume was consumed in the batch system, while it was 50 kWh for the continuous system. The present results show that the batch system can be used for small wastewater streams whereas the continuous system can be used for large wastewater streams for domestic wastewater treatment.  相似文献   

19.
Stable isotopes analyses of oxygen and hydrogen of lake water were used to estimate the effect of evaporation (E) on the water quality of four shallow lakes in the Amapá State coast—Amazon/Brazil. These lakes, with different size and hydrologic conditions, were sampled during the course of the 2015/2016 El‐Niño (record‐breaking warming/drought in the Amazon rainforest). Hydrometeorological and water quality parameters were simultaneously performed to the isotopic sampling. The results showed that the evaporation process and the water quality can be explained by climate season and distances from the Atlantic Ocean. Lake evaporation losses ranged from ≈0–22% during the wet season in April/2016 and ≈35.7% during the dry season in November/2015. As expected, the evaporation of lake water was greater during the dry season, but it was higher for lakes farther away from the Atlantic Ocean compared with more coastal lakes due to tidal preponderance and the influence of major river channels. The more inland estuarine lakes showed a lower level of salinity (0.00–0.03 ppt) compared with those closer to the Atlantic Ocean (0.01–0.08 ppt). The El Niño phenomenon, with a lower precipitation in the Amazon basin, may initiate salinization of lakes closer to the Atlantic Ocean. Furthermore, strong mean seasonal variations of evaporation (0.06 ≤ E ≤ 0.22) and other hydrologic parameters were observed (precipitation, water temperature, and water depth), with significant effects on the water quality such as salinity, dissolved oxygen, chlorophyll (p < .05). We conclude that the occurrence of the extreme climatic events can disrupt the biogeochemical and hydrological balance of these aquatic ecosystems and salinization of lakes closer to the Atlantic Ocean.  相似文献   

20.
The oxidation of organic matter from wastewater using ozone, ultraviolet radiation and ozone/UV oxidation was evaluated in a pilot plant, applying a continuous effluent arising from the Autonomous Metropolitan University wastewater treatment plant. The oxidation was measured as the efficiency to remove organic load, measured as chemical oxygen demand. The use of ozone and UV was evaluated separately and in combination through a continuous process. Three different ozone doses (0.6–1.2 mg O3/L) and three different UV radiation fluencies (6.7–20.12 mJ/cm2) were assessed. A synergistic effect of the combined process ozone/UV was demonstrated, and a maximal chemical oxygen demand reduction was achieved both processes. Due to residence times used (less than 1 min), 36% of chemical oxygen demand reduction was obtained when ozone treatment was evaluate separately and only 9% using ultraviolet radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号