首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assumption of spatial repetition is commonly made when producing bedform scale models of the hyporheic zone. Two popular solute transport codes, MT3DMS and PHT3D, do not currently provide the necessary boundary condition required to simulate spatial periodicity in hyporheic zone transport problems. In this study, we develop a spatially periodic boundary (SPB) for solutes that is compatible with a SPB that was previously developed for MODFLOW to simulate the flow component of spatially periodic problems. The approach is ideal for simulating groundwater flow and transport patterns under repeating surface features, such as ripples or dunes on the bottom of a lake or stream. The appropriate block‐centered finite‐difference approach to implement the boundary is presented and the necessary source code modifications are discussed. The performance of the solute SPB, operating in conjunction with the groundwater flow SPB, is explored through comparison of a multi‐bedform hyporheic‐zone model with a single bedform variant. The new boundary conditions perform well in situations where both dispersive effects and lateral seepage flux in the underflow regime beneath the hyporheic zone are minimal.  相似文献   

2.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

3.
Investigating changes in an aquifer system often involves comparison of observed heads from different synoptic measurements, generally with potentiometric surfaces developed by hand or a statistical approach. Alternatively, head‐specified MODFLOW models, in which constant head cells simulate observed heads, generate gridded potentiometric surfaces that explicitly account for Darcy's Law and mass balance. We developed a transient head‐specified MODFLOW model for the stratified Cambrian‐Ordovician sandstone aquifer system of northeastern Illinois to analyze flow within its 275 m deep cone of depression. Potentiometric surfaces were developed using static heads from production wells regardless of open interval; hence assuming no vertical head difference. This assumption was tested against steady‐state, head‐specified models of each sandstone strata for 1980 and 2014. The results indicate that the original conceptual model was appropriate in 1980 but not 2014, where a vertical head difference had developed at the center of the cone of depression. For earlier years, when the head difference was minimal, the transient head‐specified model compared well with a traditional, flow‐specified model. In later years, the transient head‐specified model overestimated removal of water from storage. MODFLOW facilitates the development of a time‐series of potentiometric surfaces and can easily be modified to test the impacts of different conceptual models, such as assumptions on vertical head differences. For this study of a deep confined aquifer, MODFLOW also offers advantages in generating potentiometric surfaces and flow fields over statistical interpolation techniques, although future research is needed to assess its performance in other settings.  相似文献   

4.
Regional finite‐difference models often have cell sizes that are too large to sufficiently model well‐stream interactions. Here, a steady‐state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell‐by‐cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real‐world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined “benchmark” MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost‐effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite‐difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady‐state conditions.  相似文献   

5.
The hyporheic zone (HZ), which is the region beneath or alongside a streambed, plays an important role in the stream's ecology. The duration that a water molecule or a solute remains within the HZ, or residence time (RT), is one of the most common metrics used to evaluate the function of the HZ. The RT is greatly influenced by the streambed's hydraulic conductivity (K), which is intrinsically difficult to characterize due to its heterogeneity and anisotropy. Many laboratory and numerical studies of the HZ have simplified the streambed K to a constant, thus producing RT values that may differ from those gathered from the field. Some studies have considered the heterogeneity of the HZ, but very few have accounted for anisotropy or the natural K distributions typically found in real streambeds. This study developed numerical models in MODFLOW to examine the influence of heterogeneity and anisotropy, and that of the natural K distribution in a streambed, on the RT of the HZ. Heterogeneity and anisotropy were both found to shorten the mean and median RTs while increasing the range of the RTs. Moreover, heterogeneous K fields arranged in a more orderly pattern had longer RTs than those with random K distributions. These results could facilitate the design of streambed K values and distributions to achieve the desired RT during river restoration. They could also assist the translation of results from the more commonly considered homogeneous and/or isotropic conditions into heterogeneous and anisotropic field situations.  相似文献   

6.
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated‐zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume‐averaged approach in which Lagrangian‐based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF‐MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably‐Saturated Two‐Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two‐ and three‐dimensional simulations also were investigated to ensure unsaturated‐saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large‐scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF‐MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three‐dimensional variably saturated flow and transport simulations revealed UZF‐MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide‐spread use of both MODFLOW and MT3DMS, the added capability of unsaturated‐zone transport in this familiar modeling framework stands to benefit a broad user‐ship.  相似文献   

7.
A new MODFLOW package (Nonlinear Flow Process; NLFP) simulating nonlinear flow following the Forchheimer equation was developed and implemented in MODLFOW‐2005. The method is based on an iterative modification of the conductance calculated and used by MODFLOW to obtain an effective Forchheimer conductance. The package is compatible with the different layer types, boundary conditions, and solvers as well as the wetting capability of MODFLOW. The correct implementation is demonstrated using four different benchmark scenarios for which analytical solutions are available. A scenario considering transient flow in a more realistic setting and a larger model domain with a higher number of cells demonstrates that NLFP performs well under more complex conditions, although it converges moderately slower than the standard MODFLOW depending on the nonlinearity of flow. Thus, this new tool opens a field of opportunities to groundwater flow simulation with MODFLOW, especially for core sample simulation or vuggy karstified aquifers as well as for nonlinear flow in the vicinity of pumping wells.  相似文献   

8.
The standard MODFLOW packages offer limited capabilities to model piecewise-linear boundary conditions to describe ground water–surface water interaction. Specifically, MODFLOW is incapable of representing a Cauchy-type boundary with different resistances for discharge or recharge conditions. Such a more sophisticated Cauchy boundary condition is needed to properly represent surface waters alternatively losing water through the bottom (high resistance) or gaining water mostly near the water surface (low resistance). One solution would be to create a new package for MODFLOW to accomplish this. However, it is also possible to combine multiple instances of standard packages in a single cell to the same effect. In this specific example, the general head boundary package is combined with the drain package to arrive at the desired piecewise-linear behavior. In doing so, the standard USGS MODFLOW version can be used without any modifications at the expense of a minor increase in preprocessing and postprocessing and computational effort. The extra preprocessing for creating the input and extra postprocessing to determine the water balance in terms of the physical entities from the MODFLOW cell fluxes per package can be taken care of by a user interface.  相似文献   

9.
Finite‐difference frequency‐domain modelling of seismic wave propagation is attractive for its efficient solution of multisource problems, and this is crucial for full‐waveform inversion and seismic imaging, especially in the three‐dimensional seismic problem. However, implementing the free surface in the finite‐difference method is nontrivial. Based on an average medium method and the limit theorem, we present an adaptive free‐surface expression to describe the behaviour of wavefields at the free surface, and no extra work for the free‐surface boundary condition is needed. Essentially, the proposed free‐surface expression is a modification of density and constitutive relation at the free surface. In comparison with a direct difference approximate method of the free‐surface boundary condition, this adaptive free‐surface expression can produce more accurate and stable results for a broad range of Poisson's ratio. In addition, this expression has a good performance in handling the lateral variation of Poisson's ratio adaptively and without instability.  相似文献   

10.
Iterative solvers preconditioned with algebraic multigrid have been devised as an optimal technology to speed up the response of large sparse linear systems. In this work, this technique was implemented in the framework of the dual delineation approach. This involves a single groundwater flow linear solution and a pure advective transport solution with different right-hand sides. The new solver was compared with other preconditioned iterative methods, the MODFLOW's GMG solver, and direct sparse solvers. Test problems include two- and three-dimensional benchmarks spanning homogeneous and highly heterogeneous and anisotropic formations. For the groundwater flow problems, using the algebraic multigrid preconditioning speeds up the numerical solution by one to two orders of magnitude. The algebraic multigrid preconditioner efficiency was preserved for the three dimensional heterogeneous and anisotropic problem unlike for the MODFLOW's GMG solver. Contrarily, a sparse direct solver was the most efficient for the pure advective transport processes such as the forward travel time simulations. Hence, the best sparse solver for the more general advection-dispersion transport equation is likely to be Péclet number dependent. When equipped with the best solvers, processing multimillion grid blocks by the dual delineation approach is a matter of seconds. This paves the way for its routine application to large geological models. The paper gives practical hints on the strategies and conditions under which algebraic multigrid preconditioning would remain competitive for the class of nonlinear and/or transient problems.  相似文献   

11.
In order to better represent the configuration of the stream network and simulate local groundwater‐surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater‐flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface‐water depletion by wells) without recourse to labor‐intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW‐USG) allows application of regional models to address local problems. A “semi‐structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20‐layer model with uniform 5000‐foot (1524‐m) lateral spacing was converted to 4 layers with 500‐foot (152‐m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi‐structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi‐structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface‐water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).  相似文献   

12.
The nonhorizontal‐model‐layer (NHML) grid system is more accurate than the horizontal‐model‐layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW‐2000. However, the finite‐difference scheme of NHML was based on the Dupuit‐Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite‐difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW‐2000 to become the MODFLOW‐SP model. The accuracy of MODFLOW‐SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW‐2000 and MODFLOW‐SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW‐SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW‐SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW‐SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0.  相似文献   

13.
Jacob Zaidel 《Ground water》2013,51(6):952-959
Known analytical solutions of groundwater flow equations are routinely used for verification of computer codes. However, these analytical solutions (e.g., the Dupuit solution for the steady‐state unconfined unidirectional flow in a uniform aquifer with a flat bottom) represent smooth and continuous water table configurations, simulating which does not pose any significant problems for the numerical groundwater flow models, like MODFLOW. One of the most challenging numerical cases for MODFLOW arises from drying‐rewetting problems often associated with abrupt changes in the elevations of impervious base of a thin unconfined aquifer. Numerical solutions of groundwater flow equations cannot be rigorously verified for such cases due to the lack of corresponding exact analytical solutions. Analytical solutions of the steady‐state Boussinesq equation, associated with the discontinuous water table configurations over a stairway impervious base, are presented in this article. Conditions resulting in such configurations are analyzed and discussed. These solutions appear to be well suited for testing and verification of computer codes. Numerical solutions, obtained by the latest versions of MODFLOW (MODFLOW‐2005 and MODFLOW‐NWT), are compared with the presented discontinuous analytical solutions. It is shown that standard MODFLOW‐2005 code (as well as MODFLOW‐2000 and older versions) has significant convergence problems simulating such cases. The problems manifest themselves either in a total convergence failure or erroneous results. Alternatively, MODFLOW‐NWT, providing a good match to the presented discontinuous analytical solutions, appears to be a more reliable and appropriate code for simulating abrupt changes in water table elevations.  相似文献   

14.
The spectrum of this survey turns on the evaluation of various existing theoretical combining models, when invoked within the internal boundary condition management at a junction. Based on the assumption that: when the Froude number is low (i.e. the flow is subcritical), the energy equation at the junction can be approximated by the stages heads equality. Actual literature and many commercial packages rather use this concept for the treatment of the junction’s internal boundary handling because it is easy to implement and it avoids the solving of nonlinear equations. In the last decade, many nonlinear combining models, based on the momentum conservation through the junction, have been reported. However, using them to operate within the internal boundary condition treatment of an open-channel confluence has not yet been investigated. Hence, this research focuses on studying the practical aspect of several combining models, once applied within the junction’s internal boundary management. Therefore, the recent nonlinear models of Gurram, Hsu and Shabayek have been briefly detailed together with the traditional concept of assuming water stages equality at the junction. Subsequently, an experimental examination was performed according to available experiments as mean to pre-evaluate (separately at the junction) the four junction models in the steady state. Moreover, according to the latter inspection the attention was constrained to study the effect of high/low subcritical Froude number at the junction. Finally, two hypothetical hydraulic problems were defined and computed in order to exhibit the performance of these junction models when used to contend the junction’s internal boundary handling. The problems involved: (a) steady and transient flows; (b) high and low (subcritical) Froude number at the junction. Supported by the experimental and numerical investigations, it can be concluded that even while the Froude number spectrum is subcritical, precautions have to be taken when dealing with the concept of energy heads equality, notably for a Froude higher than 0.35 at the junction.  相似文献   

15.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Numerical modelling plays an important role in helping us understand the characteristics of seismic wave propagation. The presence of spurious reflections from the boundaries of the truncated computational domain is a prominent problem in finite difference computations. The nearly perfectly matched layer has been proven to be a very effective boundary condition to absorb outgoing waves in both electromagnetic and acoustic media. In this paper, the nearly perfectly matched layer technique is applied to elastic isotropic media to further test the method's absorbing ability. The staggered‐grid finite‐difference method (fourth‐order accuracy in space and second‐order accuracy in time) is used in the numerical simulation of seismic wave propagation in 2D Cartesian coordinates. In the numerical tests, numerical comparisons between the nearly perfectly matched layer and the convolutional perfectly matched layer, which is considered the best absorbing layer boundary condition, is also provided. Three numerical experiments demonstrate that the nearly perfectly matched layer has a similar performance to the convolutional perfectly matched layer and can be a valuable alternative to other absorbing layer boundary conditions.  相似文献   

17.
A new method based on a graphics processing unit (GPU) library is proposed in the paper to parallelize MODFLOW. Two programs, GetAb_CG and CG_GPU, have been developed to reorganize the equations in MODFLOW and solve them with the GPU library. Experimental tests using the NVIDIA Tesla C1060 show that a 1.6‐ to 10.6‐fold speedup can be achieved for models with more than 105 cells. The efficiency can be further improved by using up‐to‐date GPU devices.  相似文献   

18.
A method is proposed for calculating the equivalent hydraulic conductivity (EHC) within a finite difference block (FDB). Application of the constant‐flux assumption of Darcy's Law, the EHC equals to the integration of effective hydraulic conductivity (Kw) as a function of pressure head (hw) divided by the head difference at the ends of the FDB. Error analysis show that the constant‐flux (CF) EHC estimates are better than those computed by the commonly used arithmetic‐mean (AM), geometric‐mean (GM), and harmonic‐mean (HM) techniques. CF EHC results are even more superior at larger interblock head difference situations. Simulations of water infiltration experiments show that simulations using the CF EHC or AM or GM weighting technique have only slight difference while applying the Neumann type boundary condition at the ground surface. In case of the Dirichlet type boundary condition, however, the CF EHC is superior to the other two in correctly estimating the depth of infiltration while enlarging the grid size. Therefore, it is recommended to adopt the CF EHC with a larger grid size to the more stable and more efficient results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, an effective and powerful approach for simulating seismic wave propagation in elastic media with an irregular free surface was proposed. However, in previous studies, researchers used the periodic condition and/or sponge boundary condition to attenuate artificial reflections at boundaries of a computational domain. As demonstrated in many literatures, either the periodic condition or sponge boundary condition is simple but much less effective than the well‐known perfectly matched layer boundary condition. In view of this, we intend to introduce a perfectly matched layer to simulate seismic wavefields in unbounded models with an irregular free surface. We first incorporate a perfectly matched layer into wave equations formulated in a frequency domain in Cartesian coordinates. We then transform them back into a time domain through inverse Fourier transformation. Afterwards, we use a boundary‐conforming grid and map a rectangular grid onto a curved one, which allows us to transform the equations and free surface boundary conditions from Cartesian coordinates to curvilinear coordinates. As numerical examples show, if free surface boundary conditions are imposed at the top border of a model, then it should also be incorporated into the perfectly matched layer imposed at the top‐left and top‐ right corners of a 2D model where the free surface boundary conditions and perfectly matched layer encounter; otherwise, reflections will occur at the intersections of the free surface and the perfectly matched layer, which is confirmed in this paper. So, by replacing normal second derivatives in wave equations in curvilinear coordinates with free surface boundary conditions, we successfully implement the free surface boundary conditions into the perfectly matched layer at the top‐left and top‐right corners of a 2D model at the surface. A number of numerical examples show that the perfectly matched layer constructed in this study is effective in simulating wave propagation in unbounded media and the algorithm for implementation of the perfectly matched layer and free surface boundary conditions is stable for long‐time wavefield simulation on models with an irregular free surface.  相似文献   

20.
Generating MODFLOW grids from boundary representation solid models   总被引:3,自引:0,他引:3  
Complex stratigraphy can be difficult to simulate in MODFLOW models. MODFLOW uses a structured grid that requires that each grid layer be continuous throughout the model domain. This makes it difficult to explicitly represent common features such as pinchouts and embedded seams in a MODFLOW model. In this paper, we describe a method for automatically generating MODFLOW-compatible grids from boundary-representation solid models. Solid models are data structures developed originally for computer-aided design applications that define the geometry of three-dimensional objects. Solid models can be used to represent arbitrarily complex stratigraphy. The elevations defined by the solids are then extracted from the solids in a manner that preserves the continuous-layer requirement imposed by MODFLOW. Two basic approaches are described: The first method adjusts the MODFLOW grid dimensions (layer elevations) to fit the solid model boundaries, and the second method creates a regular MODFLOW grid and adjusts the material properties to match the changes in stratigraphy. One of the main benefits of using solid models to define stratigraphy for MODFLOW models is that it provides a grid-independent definition of the layer elevations that can be used to immediately re-create the MODFLOW grid geometry after any change to the grid resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号