首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将理想化的南中国海海盆在垂直方向上划分为Ekman层、惯性层和摩擦层. Ekman层中的运动由大气风应力驱动,其底部的扰动压力将作为其下惯性层中运动的上边界条件. 惯性层中的运动是由f 平面三维非线性方程在准地转近似下位势涡度守恒控制,由此得到控制惯性层中运动关于扰动压力的三维椭圆型方程. 在惯性层以下考虑到深层的海盆水平尺度很小,由此引进带有底部摩擦的线性控制方程,方程的边界条件为惯性层和摩擦层交界面上的扰动压力连续,沿海盆边界假定海水与相邻的固壁间无热量交换,由此设在海盆边界上扰动温度为零. 在此基础上分别利用惯性层和摩擦层中的椭圆型控制方程计算了相应层次上冬、夏季的扰动压力和准地转流. 结果表明冬季各层上以气旋式环流为主,且随深度的增加流速减小;夏季各层上以反气旋式环流为主,流速也随深度增加而减小. 这在一定程度上和观测事实相符.  相似文献   

2.
Abstract

A simple way to model stratification of the ocean or atmosphere is in terms of two superposed homogeneous layers of different density. Effects of cooling of the upper layer, such as that which occurs during bottom-water formation in the ocean, can be simulated by mass transfer from the upper layer to the lower layer. A model is constructed to see What effect such a mass transfer has on the flow when the mass transfer is confined to a limited region. The main effects are (i) doming of the interface, which maintains pressure gradients in balance with the velocity field, (ii) cyclonic rotation in the upper layer due to conservation of angular momentum of particles king drawn toward the sink, yet anticyclonic vorticity for those particles outside the mass transfer region due to shrinking of vortex lines drawn up over the dome. (iii) generally anticyclonic rotation in the lower layer due to particles tending to maintain their angular momentum while being pushed outwards, but some cyclonic rotation near the centre of mass transfer, due to momentum transfer from the upper layer. Similar effects to these are seen in the Greenland Sea where bottom water formation occurs. Results of the same sort are also found in a laboratory model of the process.  相似文献   

3.
Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea and its mechanism were investigated using empirical orthogonal function (EOF) analysis with satellite sea surface heights over the northern East/Japan Sea and a three-dimensional circulation model. The spatial structure and temporal variation of first EOF mode, which explains about 64% of the total variance, indicate that a large cyclonic circulation in the northern East/Japan Sea shows a semi-annual variation with maximum strength in summer and winter. According to numerical model result, the Liman Cold Current, accepted as a major current in the northern East/Japan Sea, is well mixed vertically by the winter monsoon and the current in the upper layer has a relatively deep structure, with a maximum westward speed of about 20 cm/s in winter. On the other hand, in summer the current has a stronger baroclinic structure of velocity than in winter. Numerical experiments showed that in summer the temporal variation of upper layer circulation is controlled by thermal forcing, such as sea surface heat flux and inflow of heat transport into the East/Japan Sea through the Korea/Tsushima Strait. Moreover, the cyclonic circulation in the upper layer of the northern East/Japan Sea is also generated and strengthened by the positive wind stress curl occupying most of the East/Japan Sea during the winter. The seasonal variation of each forcing that drives the circulation is responsible for the strength or weakness of the upper layer circulation in the northern East/Japan Sea. The contribution of each forcing to the seasonal variation of the upper layer circulation is examined through sensitivity experiments. According to these numerical experiments, the upper layer circulation in the northern East/Japan Sea is strengthened twice a year, in winter and summer, and this semi-annual variation is determined by a combination of wind (winter) and thermal (summer) forcing.  相似文献   

4.
A three-dimensional, prognostic, wave–tide–circulation coupled numerical model is developed to study the effects of tidal mixing on the summertime vertical circulation in the Yellow Sea (YS). The distribution and mechanisms of upwelling are investigated by numerical means. Validated by historical tide gauge data, satellite sea surface temperature (SST) data, and cruise observation data, the model shows satisfactory performances in reproducing the dominant tidal system and three-dimensional sea temperature structure. Model results suggest that strong tidal mixing plays an important role in the formation of the vertical circulation in the YS. The Yellow Sea Cold Water Mass (YSCWM) is fringed by typical tidal mixing fronts (TMFs), which separate the cold, stratified water at the offshore side from the warm, well-mixed, shallow water at the other side. Considerable baroclinic gradient across the TMF makes the frontal zone the spot where the most active vertical circulation occurs; a secondary circulation is triggered with a distinct upwelling branch occurring mainly on the mixed side of the front. The numerical model produces systematic upwelling belts surrounding the YSCWM, and the upwelling is essentially induced by the TMF over sloping topography. The relative importance of tidal mixing and wind forcing for upwelling is further examined in numerical experiments. The southerly wind enhances the upwelling off the western coasts, but its overall influences in the whole YS are less important than tidal mixing. As shown by both satellite data and numerical modeling, the summertime SST field in the YS is featured by the stable existence of several site-selective surface cold patches (SCPs), most of which scatter in the waters off convex coastlines. One of the SCPs is found off Subei Bank, and the others are located off the eastern tip of Shandong Peninsula and off the three tips of Korean Peninsula. Two processes give rise to the SCP: on the one hand, TMF-induced upwelling supplies cold water from the deep layer; on the other hand, tidal mixing itself can stir the bottom water upward and homogenize the water column vertically. In the waters around the tips of peninsula in the YS, the tidal currents are extraordinarily strong, which provides a possible explanation for the site-selectivity of the SCPs.  相似文献   

5.
A new circulation model of the western North Pacific Ocean based on the parallelized version of the Princeton Ocean Model and incorporating the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme has been developed. The new model assimilates satellite data and is tested for the period January 1 to April 3, 2012 initialized from a 24-year simulation to estimate the ocean state focusing in the South China Sea (SCS). Model results are compared against estimates based on the optimum interpolation (OI) assimilation scheme and are validated against independent Argo float and transport data to assess model skills. LETKF provides improved estimates of the western North Pacific Ocean state including transports through various straits in the SCS. In the Luzon Strait, the model confirms, for the first time, the three-layer transport structure previously deduced in the literature from sparse observations: westward in the upper and lower layers and eastward in the middle layer. This structure is shown to be robust, and the related dynamics are analyzed using the results of a long-term (18 years) unassimilated North Pacific Ocean model. Potential vorticity and mass conservations suggest a basin-wide cyclonic circulation in the upper layer of the SCS (z?>??570 m), an anticyclonic circulation in the middle layer (?570 m?≥?z?>??2,000 m), and, in the abyssal basin (<?2,000 m), the circulation is cyclonic in the north and anticyclonic in the south. The cyclone–anticyclone abyssal circulation is confirmed and explained using a deep-layer reduced-gravity model as being caused by overflow over the deep sill of the Luzon Strait, coupled with intense, localized upwelling west of the strait.  相似文献   

6.
The paper adopts an f-plane quasi-geostrophic inertial model without linearization to investigate the perturbation temperature, boundary jet and upwelling (downwelling) in an idealized rectangular basin, under the consideration of west side friction layer and heat conservation. There is net heat input on the upper surface and equal quality heat dissipation on the west boundary, and without heat exchange on other boundaries, then the heat is conservation in the whole basin. Results show that there is thermal front due to denseness of the perturbation temperature in the west side boundary, the perturbation pressure and flow field are reversal on the upper layer and bottom layer. On the bottom layer, the west coastal current is northward, and the maximum perturbation pressure center is on the west, however, on the upper layer, the east coastal current is southward, and the maximum perturbation pressure center is on the east. There is strong vertical flow in narrow western boundary layer, and also in the central zone. The effect of different upper thermal forcings is also studied, and it can be concluded that there is always temperature denseness and boundary jet near the west boundary, and the appearance of flow field reversal, but the distribution of vertical flow is rather different.  相似文献   

7.
Thermal and compositional evolution of magmas after emplacement of basalt into continental crust has been investigated by means of fluid dynamic experiments using a cold solid mixture with eutectic composition and a hot liquid with higher salinity in the NH4Cl–H2O binary eutectic system. The experiments were designed to simulate cases where crystallization of a basalt magma is accompanied by melting at both the roof and floor of a crustal magma chamber. The results show that thermal and compositional convection occur simultaneously in the solution; the thermal convection is driven by cooling at the roof and the compositional convection is driven by melting and crystallization at the floor. The roof was rapidly melted by the convective heat flux, which resulted in formation of a separate eutectic melt layer (the upper liquid layer) with negligible mixing of the underlying liquid (the lower liquid layer). On the other hand, a mushy layer formed at the floor. The compositional convection at the floor carried a low heat flux, so that the heat transfer at the floor was basically explained by simple heat conduction. The thermal boundary layer in the lower liquid layer at the interface with the upper liquid layer became thicker with time and subsequently temperature decreased upward throughout the lower liquid layer. Compositional gradient with NH4Cl content decreasing upward formed by compositional convection in the lower liquid layer. The formation of these gradients resulted in formation of double-diffusive convecting layers in the lower liquid layer. The upward heat transfer was suppressed when compared with the case where the liquid region is homogenized by vigorous convection.These experimental results imply that, when a basalt magma is emplaced in continental crust, floor melting does not always enhance the cooling of the magma, but it may even reduce the total heat loss from the magma to the crusts due to suppression of convection by formation of a stabilizing compositional gradient.  相似文献   

8.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

9.
海洋中普遍存在的涡旋对全球海洋热、盐通量有重要贡献.一条于2000年6月在中美洲鹦鹉湾采集的地震剖面L115捕获到了一个海水次表层透镜状反射结构.透镜状反射的宽度约150 km,厚度约500 m,深度从100 m延伸到约600 m,核心深约200 m.结合和地震采集时间近同步的再分析数据中的流速和海水温度数据以及计算的Rossby数和Okubo-Weiss参数,将其解释为气旋涡,且可能是亚中尺度相干涡(SCV).由于地震剖面并未穿过涡旋核心水,涡旋顶底与核心水外层水团的双扩散作用使得剖面上的气旋涡中心表现为上下相邻的强反射双核结构.同航次采集的与L115大致正交的其他几条地震剖面也捕捉到了这个气旋涡.这些剖面整体的反射特征一致性较好,但和L115差异较大,涡旋内部普遍表现为近水平的中等强度反射.涡旋上边界为倾斜的强反射,这是气旋涡的等温线上凸引起的,这里也是亚中尺度锋面的发育区.这些地震剖面的涡旋反射特征的差异表明了该气旋涡空间结构的不对称性和时间演化特征.  相似文献   

10.
The Southern Yellow Sea Cold Water Mass(YSCWM) is closely related to the modern circulation system of the east China shelf seas, which has significantly influenced regional marine environmental changes. The study of the Holocene evolution of the YSCWM will greatly improve our understanding of the mechanisms of regional environmental change. Benthic foraminifera are sensitive to bottom water environmental changes and can serve as useful indicators in bottom water environmental reconstruction. In this study, benthic foraminifera were analyzed in core N02 from the northwestern margin of the southern Yellow Sea Mud to decipher the phase evolution of the YSCWM during the last 7 kyr. Benthic foraminifera census counts and Q-mode factor analysis indicate that the Holocene sedimentary environment can be divided into three stages: From6.9–5.0 ka, the fauna was dominated by Ammonia ketienziensis, indicating that the YSCWM was at its strongest during the last 7 kyr, while the Yellow Sea Coastal Current(YSCC) had a weak influence on the bottom water of the study area. From 5.0–2.9 ka,the relative abundance of Hanzawaia nipponica remarkably increased while the abundance of A. ketienziensis decreased significantly, reflecting that the strength of the YSCWM was relatively weak and the range of the YSCWM might have contracted. The influence of the YSCC on the bottom water might have slightly increased, although its influence was still weak during this time. A notable increase in low-temperature and low-salinity species, such as Protelphidium tuberculatum and Buccella spp. has occurred since 2.9 ka, indicating that the YSCC has had a strong influence on bottom water during this period,while the strength of the YSCWM has been at its weakest during the last 7 kyr. Generally, the influence of the YSCWM and the YSCC on the bottom water properties of the study area show an obvious seesaw pattern, with one's influence increasing while the other's influence decreases and vice versa. The fluctuations in the strength of YSCWM during the Holocene may be caused by the different effect allocations of regional climatic factors(i.e. El Ni?o Southern Oscillation, East Asian Winter Monsoon,summer insolation in the northern hemisphere, etc.) acting on the circulation system during different periods.  相似文献   

11.
The emplacement of kimberlites in the North American and African continents since the early Palaeozoic appears to have occurred during periods of relatively slow motion of these continents. The distribution of kimberlites in time may reflect the global pattern of convection, which forces individual plates to move faster or slower at different times. Two-dimensional numerical experiments on a convecting layer with a moving upper boundary show two different regimes: in the first, when the upper boundary velocity is high, heat is transferred by the large-scale circulation and in the second, when the upper boundary velocity is lower, heat is predominantly transferred by thermal plumes rising from the lower boundary layer. For a reasonable mantle solidus, this second regime can give rise to partial melting beneath the moving plate, far from the plate boundaries. The transition between these modes takes place over a small range of plate velocities; for a Rayleigh number of 106 it occurs around 20 mm yr?1. We suggest that the generation of kimberlite magmas may result from thermal plumes incident on the base of a slowly moving plate.  相似文献   

12.
Seasonal variation in the transverse and layered structure of estuarine circulation in Ariake Bay, Japan was investigated by box model analysis using monthly salinity data from 1990 to 2000. Two-layered gravitational estuarine circulation was intensified from autumn to spring (vertically well mixed season) accompanied by a small river discharge. Two-layered circulation was weakened accompanying the transversely segregated cyclonic circulation in the upper layer during summer (stratified season) with a large river discharge. Such seasonal variation in the transverse and layered structure of estuarine circulation is because the bay width of Ariake Bay (20 km) is narrower than the external Rossby deformation radius (235 km) but wider than the internal Rossby deformation radius (3–5 km).  相似文献   

13.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   

14.
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.  相似文献   

15.
Observations from two SOund Detection And Ranging (SODAR) units, a 10 m micrometeorological tower and five Automated Surface Observing Stations (ASOS) were examined during several synoptic scale flow regimes over New York City after the World Trade Center disaster on September 11, 2001. An ARPS model numerical simulation was conducted to explore the complex mesoscale boundary layer structure over New York City. The numerical investigation examined the urban heat island, urban roughness effect and sea breeze structure over the New York City region. Estimated roughness lengths varied from 0.7 m with flow from the water to 4 m with flow through Manhattan. A nighttime mixed layer was observed over lower Manhattan, indicating the existence of an urban heat island. The ARPS model simulated a sea-breeze front moving through lower Manhattan during the study period consistent with the observations from the SODARs and the 10-m tower observations. Wind simulations showed a slowing and cyclonic turning of the 10-m air flow as the air moved over New York City from the ocean. Vertical profiles of simulated TKE and wind speeds showed a maximum in TKE over lower Manhattan during nighttime conditions. It appears that this TKE maximum is directly related to the influences of the urban heat island.  相似文献   

16.
A three-dimensional, hydrostatic, primitive equation numerical model with modern turbulence closures is used to explore lateral circulation and the associated transport of sediments in idealized, moderately to highly stratified estuaries. The model results suggest that boundary mixing on a sloping bottom can drive a significant amount of lateral circulation. This mechanism has received little attention to date in the estuarine literature. Good agreement with an analytical solution and similar vertical structures of lateral flows to observations from the Hudson River estuary support the importance of the boundary mixing mechanism. Boundary mixing is at least as important as differential advection for the modeled scenarios, when the two mechanisms are evaluated using the salt balance equation for model runs without rotation. Linearly superposing analytical solutions for lagged boundary mixing lateral flow and Ekman-forced lateral flow yields a good representation of the near-bottom lateral flow from the model with rotation. The 2 h lag required for the boundary mixing solution is roughly equal to the vertical diffusion time scale, indicating that lateral flow adjustment depends on development of a bottom mixed layer. Sediment dynamics at cross sections seaward and landward of the salt intrusion are very different. Seaward of the salt intrusion, sediments are eroded in the channel and preferentially deposited on the right slope (looking seaward), mainly due to the combination of high sediment concentration in the channel during flood with strong up-slope transport on that side (tidal pumping). Lateral sediment re-distribution landward of the salt intrusion is negligible due to weak residual lateral circulation.  相似文献   

17.
A three-dimensional prognostic hydrodynamic model in cross sectional form is used to examine the influence of bottom friction, mixing and topography upon the spin-down and steady-state circulation in a cold water bottom-dome. Parameters characteristic of the Irish Sea or Yellow Sea cold water domes are used. In all calculations, motion is induced by specifying an initial temperature distribution characteristic of the dome, and an associated along frontal flow. The spin-down of the dome is found to be influenced by the coefficient of bottom friction, with a typical time scale of order 10 days, and in general to be independent of the chosen initial vertical profile of along frontal flow. However, in the case in which the along frontal flow is such that the near bed velocity is zero, then bottom stress is also zero, and there is no appreciable spin-down. Calculations showed that the formulation of viscosity and diffusivity had a greater effect upon the steady-state circulation than topography, suggesting that background mixing of tidal origin is important. The lack of topographic influence was due mainly to the formulation of the initial conditions which were taken to be independent of topography. The steady-state circulation was characterized by a cyclonic flow in the surface region, with an anti-cyclonic current near the bed, where frictional effects produced a bottom Ekman layer and an across frontal flow. This gave rise to vertical circulation cells in the frontal region of the dome with prevailing downwelling motion inside the dome. A detailed analysis of the dynamic balance of the various terms in the hydrodynamic equations yielded insight into the processes controlling the steady-state circulation in cold water domes. Responsible Editor: Phil Dyke  相似文献   

18.
Numerical experiments have been carried out on two-dimensional thermal convection, in a Boussinesq fluid with infinite Prandtl number, at high Rayleigh numbers. With stress free boundary conditions and fixed heat flux on upper and lower boundaries, convection cells develop with aspect ratios (width/depth) λ? 5, if heat is supplied either entirely from within or entirely from below the fluid layer. The preferred aspect ratio is affected by the lateral boundary conditions. If the temperature, rather than the heat flux, is fixed on the upper boundary the cells haveλ ≈ 1. At Rayleigh numbers of 2.4 × 105 and greater, small sinking sheets are superimposed on the large aspect ratio cells, though they do not disrupt the circulation. Similar two-scale flows have been proposed for convection in the earth's mantle. The existence of two scales of flow in two-dimensional numerical experiments when the viscosity is constant will allow a variety of geophysically important effects to be investigated.  相似文献   

19.
A cross-sectional nonhydrostatic model using idealized sill topography is used to examine the influence of bottom friction upon unsteady lee wave generation and flow in the region of a sill. The implications of changes in shear and lee wave intensity in terms of local mixing are also considered. Motion is induced by a barotropic tidal flow which produces a hydraulic transition, associated with which are convective overturning cells, wave breaking, and unsteady lee waves that give rise to mixing on the lee side of the sill. Calculations show that, as bottom friction is increased, current profiles on the shallow sill crest develop a highly sheared bottom boundary layer. This enhanced current shear changes the downwelling of isotherms downstream of the sill with an associated increase in the hydraulic transition, wave breaking, and convective mixing in the upper part of the water column. Both short and longer time calculations with wide and narrow sills for a number of sill depths and buoyancy frequencies confirm that increasing bottom friction modifies the flow and unsteady lee wave distribution on the downstream side of a sill. Associated with this increase in bottom friction coefficient, there is increased mixing in the upper part of the water column with an associated decrease in the vertical temperature gradient. However, this increase in mixing and decrease in temperature gradient in the upper part of the water column is very different from the conventional change in near-bed temperature gradient produced by increased bottom mixing that occurs in shallow sea regions as the bottom drag coefficient is increased.  相似文献   

20.
—The thermodynamic characteristics of the Asian summer monsoon are examined with a global analysis-forecast system. In this study, we investigated the large-scale balances of heat and moisture by making use of operational analyses as well as forecast fields for June, July and August (JJA), 1994. Apart from elucidating systematic errors in the temperature and moisture fields, the study expounds the influence of these errors on the large-scale budgets of heat and moisture over the monsoon region. The temperature forecasts of the model delineate predominant cooling in the middle and lower tropospheres over the monsoon region. Similarly, the moisture forecasts evince a drying tendency in the lower troposphere. However, certain sectors of moderate moistening exist over the peninsular India and adjoining oceanic sectors of the Arabian Sea and Bay of Bengal.¶The broad features of the large-scale heat and moisture budgets represented by the analysis/forecast fields indicate good agreement with the observed aspects of the summer monsoon circulation. The model forecasts fail to retain the analyzed atmospheric variability in terms of the mean circulation, which is indicated by underestimation of various terms of heat and moisture budgets with an increase in the forecast period. Further, the forecasts depict an anomalous diabatic cooling layer in the lower middle troposphere of the monsoon region which inhibits vertical transfer of heat and moisture from the mixed layer of the atmospheric boundary layer to the middle troposphere. In effect, the monsoon circulation is considerably weakened with an increase in the forecast period. The treatment of shallow convection and the use of interactive clouds in the model can reduce the cooling bias considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号