首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) spacecraft to measure polar mesospheric clouds (PMCs) and their environment. This work describes methods for identifying PMCs in SOFIE observations and determining mass density, particle shape, particle effective radius, and the parameters of a Gaussian size distribution. Results using SOFIE measurements from the northern summer of 2007 are compared with concurrent observations by the ALOMAR lidar in northern Norway. Ice particle properties determined from SOFIE are in good agreement with the lidar results, considering the differences in instrument characteristics.  相似文献   

2.
Middle atmosphere temperatures have been measured by in situ and by remote sensing instruments for several decades. Extensive temperature measurements by rocket-borne falling spheres (FS) were performed from Andøya Rocket Range in northern Norway from the late 1980s onwards. About 90 rockets were successfully launched within eight measurement campaigns and compiled to an empirical temperature statistic. About half of these measurements were in July and August. Since 1997 the Bonn University Rayleigh/Mie/Raman lidar has been operated at Esrange in northern Sweden during winter as well as during summer. One hundred and eight night mean temperature profiles were obtained for July and August from this data set and have been compared to the FS-statistics. A systematic difference could be observed, i.e. the weekly average temperatures taken from the FS-based empirical temperature statistics are up to 10 K warmer than the temperatures measured by lidar, depending on altitude. In particular comparisons during August show larger differences than comparisons with July data. Temperatures were additionally derived from the Rayleigh-scattered light of the Bonn University Na-resonance lidar which was operated during the 1980s at Andøya. No systematic differences between these measurements and the FS-data were found. Gravity waves, tides, volcanic aerosol, and the solar cycle are not likely to cause the observed differences, since their influence is minimised either by data selection (gravity waves and tides) or by measurement times (volcanic aerosol, solar cycle). Additionally to the temperature difference a change in the gravity wave activity was observed, in particular during summer 2002 and 2006. During these years also noctilucent clouds occurred rather late in the season. The latest unambiguous observation of a noctilucent cloud by the U. Bonn lidar at Esrange was on 24 August 2006. All these observations are indications of a long-term temperature change in the polar summer middle atmosphere as predicted by model calculations. While similar changes have already been observed at middle and low latitudes, temperature trend analyses for the polar atmosphere did not reveal any variation up to now.  相似文献   

3.
A European campaign of ground-based radar, lidar and optical measurements was carried out during the winter of 1996/1997 (28 December–2 February) to study lee waves in the northern part of Scandinavia. The participants operated ozone lidars, backscatter lidars and MST radars at ALOMAR/Andoya and Esrange/Kiruna, and an ALIS imaging system in Kiruna. The Andoya site was generally windward of the Scandinavian mountains, the Kiruna site on the leeward side. The goal of the experiment was to examine the influence of lee waves on the formation of Polar Stratospheric Clouds (PSCs). This paper studies the radar data from MST-radar ESRAD located at Esrange [68.°N, 21.°E], i.e. in the lee of the mountains. We present three cases where strong lee waves were observed: in one case they propagated upwards to the lower stratosphere and in the other two cases they were trapped or absorbed in the troposphere. We examine the local waves and the direction and strength of the local wind using the radar, the synoptic meteorological situation using weather maps (European Meteorological Bulletin) and the synoptic stratospheric temperatures using ECMWF data. We observed that waves propagate up to the stratosphere during frontal passages. When anticyclonic ridges are present, the propagation to the stratosphere is very weak. This is due to trapping of the waves at or below the tropopause. We also show that the radar data alone can be used to characterise the different weather conditions for the three cases studied (through the variation of the height of the tropopause). The synoptic stratospheric temperatures in the three cases were similar, and were above the expected threshold for PSC formation. Lidar and visual observation of PSCs and nacreous clouds, respectively, showed that these were present only in the case when the lee waves propagated up to the lower stratosphere.  相似文献   

4.
For the first time we present an analysis of observations of noctilucent clouds obtained with a network of automatic digital cameras located at opposite sides of the northern hemisphere. The advantage of this network is that the cameras are located along the same latitude circle producing comparable measurements. We find that there is an indication of the 2-day planetary wave propagation influencing the occurrence frequency, geographical distribution and brightness variations of noctilucent clouds. The 5-day planetary wave has much less effect on noctilucent clouds than that of the 2-day wave, at least for the summers of 2006 and 2007. At the same time, bright noctilucent clouds tend to occur every successive night during short periods of 3–5 nights.  相似文献   

5.
Variations in the amplitude of the ordinary wave from a received signal on a partial reflection radar at a short-wave range on the Kola Peninsula during the appearance of noctilucent clouds on August 12, 2016, are examined. Noctilucent clouds are registered by the all-sky camera located 100 km southward of the partial reflection radar. They extended over the entire celestial hemisphere observed by the all-sky camera; all of them moved in the southern direction, and the clouds had a tenuous structure and showed gravity waves with spatial periods of 15–100 km. During the presence of noctilucent clouds over the partial reflection radar, polar mesospheric summer echoes (PMSEs) were recorded at heights of 83–86 km. It was found that the presence of only noctilucent clouds in diagram of the antenna pattern of partial frequency radar is not sufficient for the appearance of PMSEs; noctilucent clouds must also have irregularities of several kilometers. The PMSE heights decreased with a velocity of 0.5 and 1.3 m/s. The issue of aerosols that cause the appearance of PMSEs and noctilucent clouds is discussed.  相似文献   

6.
The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation (σ) is the second parameter to which BC is most sensitive to. Yet, the impact of m and σ on BC variations is limited by the realistic range of their variations. The mean radius (rm) of the size distribution is thus the key parameter for BC, as it can vary several-fold. BC is most sensitive to the presence of large particles. The sensitivity of BC to rm and σ variations increases when the initial size distributions are characterized by low rm and large σ. This makes lidar more suitable to detect particles growing on background aerosols than on volcanic aerosols.  相似文献   

7.
The Cloud Imaging and Particle Size Experiment (CIPS) is one of three instruments aboard the Aeronomy of Ice in the Mesosphere spacecraft. CIPS provides panoramic ultraviolet images of the atmosphere over a wide range of scattering angles in order to determine the presence of polar mesospheric clouds, measure their spatial morphology, and constrain the parameters of cloud particle size distribution. The AIM science objectives motivate the CIPS measurement approach and drive the instrument requirements and design, leading to a configuration of four wide-angle cameras arrayed in a ‘+’ arrangement that covers a 120° (along orbit track)×80° (across orbit track) field of view. CIPS began routine operations on May 24, 4 weeks after AIM was launched. It measures scattered radiances from PMCs near 83 km altitude to derive cloud morphology and particle size information by recording multiple exposures of individual clouds to derive PMC scattering phase functions and detect nadir horizontal spatial scales to approximately 3 km. This paper describes the instrument design, its prelaunch characterization and calibration, and flight operations. Flight observations and calibration activities confirm performance inferred during ground test, verifying that CIPS exceeds its measurement requirements and goals. These results are illustrated with example flight images that demonstrate the instrument measurement performance.  相似文献   

8.
For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3/2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.  相似文献   

9.
Two Fourier transform spectrometers have been used to investigate the properties of the near-infrared hydroxyl (OH) nightglow emission under high-latitude summertime conditions and any association with noctilucent clouds (NLCs). The measurements were made from Poker Flat Research Range, Alaska (65.1°N, 147.5°W), during August 1986. Simultaneous photographic observations of the northern twilight sky were made from Gulkana, Alaska (62.2°N, 145.5°W), approximately 340 km to the south to establish the presence of NLCs over the spectrometer site. Data exhibiting significant short-term variations in the relative intensity (as much as 50-100%) and rotational temperature (typically 5–15 K) were recorded on six occasions when NLCs were observed. Joint measurements were also obtained on several “cloud-free” nights. No obvious relationship was found linking the mean OH intensity or its variation with the occurrence of NLCs. However, a clear tendency was found for the mean OH temperature to be lower on NLC nights than on cloud-free nights. In particular, a significant fraction of the OH(3-1) band spectra recorded by each instrument (16-57%) exhibited temperatures below \sim154 K on NLC nights compared with <3% on cloud-free nights. This result is qualitatively consistent with current models for ice particle nucleation and growth, but the mean OH temperature on NLC nights (\sim156 K) was significantly higher than would be expected for long-term particle growth in this region. These observations raise questions concerning the expected proximity of the high-latitude, summertime OH layer and the NLC growth region.  相似文献   

10.
The results of Rayleigh lidar sounding of the upper atmosphere over Kamchatka are analyzed in comparison with ionosonde data. A correlation between light backscattering signals at a wavelength of 532 nm and parameters determining the content of plasma in the nocturnal F2 layer of the ionosphere is found. Based on the performed analysis of lidar data and the geophysical situation, a hypothesis about the possible role of Rydberg atoms in the formation of lidar reflections at ionospheric heights is discussed.  相似文献   

11.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

12.
Based on radiative transfer calculations, it is studied whether polar stratospheric clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) on board the second European Research Satellite (ERS-2) planned to be launched in 1995. It is proposed to identify PSC-covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.515 µm and 0.67 µm to one radiance measured in the centre of the oxygen A-band at 0.76 µm. Simulations are carried out for two solar zenith angles, =78.5° and =86.2°. They indicate that, in presence of PSCs and with increasing solar zenith angles above =80°, the NRD decrease to values clearly below those derived under conditions of a cloud-free stratosphere. Results for =86.2° show that the method is successful independent of existing tropospheric clouds, of different tropospheric aerosol loadings, and of surface albedos. Results for =78.5° illustrate that PSC detection under conditions of smaller solar zenith angles <80° needs additional information about tropospheric clouds.  相似文献   

13.
We present an analysis of systematic visual and photographic observations of noctilucent clouds seen from Lithuania in the years 1973–2009. The main trends in the noctilucent cloud occurrence frequency and the mean brightness are derived from statistical and correlation analysis. A clear signature of the solar activity cycle is imprinted on the noctilucent cloud occurrence frequency and mean brightness, both showing distinct anti-correlation with the sunspot numbers; however, no statistically significant increase of either noctilucent cloud occurrence frequency or brightness has been detected at least over past 19 yr (1991–2009). The only statistically significant positive trend is established for the numbers of very bright noctilucent cloud displays in the years 1973–2009. The most recent noctilucent cloud observations are linked to variations of local mesospheric temperatures, measured by the Aura satellite.  相似文献   

14.
After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ~9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ~12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.  相似文献   

15.
Polar stratospheric clouds (PSCs) are often observed in the Kiruna region in northern Sweden, east of the Scandinavian mountain range, during wintertime. PSC occurrence can be detected by ground-based optical instruments. Most of these require clear tropospheric weather. By applying the zenith-sky colour index technique, which works under most weather conditions, the data availability can be extended. The observations suggest that PSC events, especially of type II (water PSCs) may indeed more common than predicted by synoptic models, which is expected because of the frequent presence of mountain-induced leewaves. However, it will be of importance to increase the density of independent observations.  相似文献   

16.
We present the first results of gravity wave signatures on polar mesospheric clouds (PMCs) during the summer of 2007, in the northern hemisphere polar region. The Cloud Imaging and Particle Size (CIPS) experiment has one of the three instruments on board the NASA Aeronomy of Ice in the Mesosphere (AIM) spacecraft, which was launched into a sun-synchronous orbit on April 25, 2007. CIPS is a four-camera, wide-field (120°×80°) imager designed to measure PMC morphology and particle properties. One of the objectives of AIM is to investigate gravity wave effects on PMC formation and evolution. CIPS images show distinct wave patterns and structures in PMCs that are similar to ground-based photographs of noctilucent clouds (NLCs). The observed horizontal wavelengths of the waves were found to vary between 15 and 320 km, with smaller-wavelength structures of less than 50 km being the most common. In this paper we present examples of individual quasi-monochromatic wave events observed by CIPS and statistics on the wave patterns observed in the northern hemisphere during the summer months of 2007, together with a map showing the geographic locations of gravity wave events observed from CIPS.  相似文献   

17.
Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E) from 1994 until 1997 polar mesosphere summer echoes (PMSE) have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E). During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR) of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E) and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.  相似文献   

18.
When the University of Bonn lidar on the Esrange (68°N, 21°E), Sweden, was switched on in the evening of July 18, 1998, a geometrically and optically thin cloud layer was present near 14 km altitude or 400 K potential temperature, where it persisted for two hours. The tropopause altitude was 4 km below the cloud altitude. The cloud particles depolarized the lidar returns, thus must they have been aspherical and hence solid. Atmospheric temperatures near 230 K were approximately 40 K too high to support ice particles at stratospheric water vapour pressures of a few ppmv. The isentropic back trajectory on 400 K showed the air parcels to have stayed clear of active major rocket launch sites. The air parcels at 400 K had travelled from the Aleutians across Canada and the Atlantic Ocean arriving above central Europe and then turned northward to pass over above the lidar station. Parcels at levels at ±25 K from 400 K had come from the pole and joined the 400 K trajectory path above eastern Canada. Apparently the cloud existed in a filament of air with an origin different from those filaments both above and below. Possibly the 400 K level air parcels had carried soot particles from forest wild fires in northern Canada or volcanic ash from the eruption of the Korovin Volcano in the Aleutian Islands.  相似文献   

19.
The lidar measurements at Verhnetulomski observatory (68.6°N, 31.8°E) at Kola peninsula detected a considerable increase of stratospheric aerosol concentration after the solar proton event of GLE (ground level event) type on the 16/02/84. This increase was located at precisely the same altitude range where the energetic solar protons lost their energy in the atmosphere. The aerosol layer formed precipitated quickly (1–2 km per day) during 18, 19, and 20 February 1984, and the increase of R(H) (backscattering ratio) at 17 km altitude reached 40% on 20/02/84. We present the model calculation of CN (condensation nuclei) altitude distribution on the basis of an ion-nucleation mechanism, taking into account the experimental energy distribution of incident solar protons. The meteorological situation during the event was also investigated.deceased  相似文献   

20.
Novel coincident 3-D radar, lidar and optical image measurements of dynamical structures in polar mesosphere summer echoes (PMSE) and noctilucent clouds (NLC) are presented. Common volume mesospheric measurements were made over central Alaska using the new Poker Flat Incoherent Scatter Radar (PFISR), a co-located Rayleigh lidar and remote, two-station digital image observations, enabling the first detailed investigation of the horizontal and vertical structures of NLC and PMSE. Coincident measurements were made of an unusual NLC display recorded on 10–11 August 2007, characterized by a broad luminous band that contained several prominent wave forms. Concurrent lidar and image measurements established the presence of NLC within the radar volume from ~09:00 UT (01:00 LT), when the solar depression angle was 10.4°, until dawn. Strong but intermittent PMSE were detected by PFISR, with distinct patchy structures that exhibited a similar southward motion as the NLC. Detailed comparison of the 3-D PMSE structures and the NLC lidar and image data have revealed striking similarities when account was taken of the NLC layer altitude, suggesting a direct link between their small-scale spatial signatures (within the current resolution of the radar measurements). At the same time, the lidar detected a sustained increase in the backscatter signal, while the imagers revealed the development of copious short horizontal wavelength (4.9 km) billow waves. We conclude that strong wind shears associated with the Kelvin–Helmholtz billow instabilities played a key role in the development of a neutral turbulence layer in close proximity to the NLC layer resulting in the strong but intermittent PMSE detected at 450 MHz on this occasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号