首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Recent improvements in the local wavenumber approach have made it possible to estimate both the depth and model type of buried bodies from magnetic data. However, these improvements require calculation of third‐order derivatives of the magnetic field, which greatly enhances noise. As a result, the improvements are restricted to data of high quality. We present an alternative method to estimate both the depth and model type using the first‐order local wavenumber approach without the need for third‐order derivatives of the field. Our method is based on normalization of the first‐order local wavenumber anomalies and provides a generalized equation to estimate the depth of some 2D magnetic sources regardless of the source structure. Information about the nature of the sources is obtained after the source location has been estimated. The method was tested using synthetic magnetic anomaly data with random noise and using three field examples.  相似文献   

2.
Magnetic anomalies are often disturbed by the magnetization direction, so we can’t directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.  相似文献   

3.
In this paper, I introduce a new approach based on truncated singular value decomposition (TSVD) analysis for improving implementation of grid-based Euler deconvolution with constraints of quasi 2D magnetic sources. I will show that by using TSVD analysis of the gradient matrix of magnetic field anomaly (reduced to pole) for data points located within a square window centered at the maximum of the analytic signal amplitude, we are able to estimate the strike direction and dip angle of 2D structures from the acquired eigenvectors. It is also shown that implementation of the standard grid-based Euler deconvolution can be considerably improved by solving the Euler's homogeneity equation for source location and structural index, simultaneously, using the TSVD method. The dimensionality of the magnetic anomalies can be indicated from the ratio between the smallest and intermediate eigenvalues acquired from the TSVD analysis of the gradient matrix. For 2D magnetic sources, the uncertainty of the estimated source location and structural index is significantly reduced by truncating the smallest eigenvalue.Application of the method is demonstrated on an aeromagnetic data set from the Åsele area in Sweden. The geology of this area is dominated by several dike swarms. For these dolerite dikes, the introduced method has provided useful information of strike directions and dip angles in addition to the estimated source location and structural index.  相似文献   

4.
We present two new potential-inversion methods for estimating the depth and the nature (structural index) of the source, which use various combinations of different forms of local wavenumbers and the information about the horizontal location to estimate individually the depth and the nature of a magnetic source. The improved local wavenumber methods only use the horizontal offset and vertical offset of local wavenumbers to estimate the depth and the structural index of the source, so they yield more stable results compared with the results obtained by current methods that require the derivatives of local wavenumbers. Tests conducted with synthetic noise-free and noise-corrupted magnetic data show that the proposed methods can successfully estimate the depth and the nature of the geologic body. However, our methods are sensitive to high-wavenumber noise present in the data, and we reduced the noise effect by upward continuing the noise-corrupted magnetic data. The practical application of the new methods is tested on a real magnetic anomaly over a dike whose source parameters are known and the inversion results are consistent with the true values.  相似文献   

5.
Balanced edge detection filters can recognize the edges of the shallow and deep bodies simultaneously, and are commonly used in the edge detection of potential field data. In this paper, we present using the balanced edge detection filters to estimate source locations, and derive two linear equations based on the balanced edge detection filters that can estimate the locations of the source without any priori information about the nature (structural index) of the source. The proposed methods are demonstrated on synthetic gravity anomalies, and the inversion results show that the proposed methods can successfully estimate location parameters of the sources. I also apply the proposed methods to real magnetic data, and the inversion results estimated by the proposed methods are consistent with the results estimated by the other similar method.  相似文献   

6.
The calculable magnitudes of the anomalous magnetic field from simple 2D sources and their gradients and Laplacians appear as ratios that can be synthesized in functional forms, corresponding to the different source shapes. Field components and first‐order derivatives are involved in the inversion procedures presented. The structural index and source depth are estimated independently of each other. The applied functions allow magnetic profiles and magnetic maps to be shape‐ and depth‐converted with immediate imaging of the inversion results. The contours of these functions outline elongated loops around the 2.5D anomaly axis on magnetic maps. The width of the loops reflects the depth and structural index N of the source in the scale units of the inverted map. Model and field tests illustrate the effectiveness of this approach for fast automatic inversion of large sets of magnetic data for depth, shape, length and location of simple sources.  相似文献   

7.
Full Tensor Gravity Gradiometry (FTG) data are routinely used in exploration programmes to evaluate and explore geological complexities hosting hydrocarbon and mineral resources. FTG data are typically used to map a host structure and locate target responses of interest using a myriad of imaging techniques. Identified anomalies of interest are then examined using 2D and 3D forward and inverse modelling methods for depth estimation. However, such methods tend to be time consuming and reliant on an independent constraint for clarification. This paper presents a semi‐automatic method to interpret FTG data using an adaptive tilt angle approach. The present method uses only the three vertical tensor components of the FTG data (Tzx, Tzy and Tzz) with a scale value that is related to the nature of the source (point anomaly or linear anomaly). With this adaptation, it is possible to estimate the location and depth of simple buried gravity sources such as point masses, line masses and vertical and horizontal thin sheets, provided that these sources exist in isolation and that the FTG data have been sufficiently filtered to minimize the influence of noise. Computation times are fast, producing plausible results of single solution depth estimates t hat relate directly to anomalies. For thick sheets, the method can resolve the thickness of these layers assuming the depth to the top is known from drilling or other independent geophysical data. We demonstrate the practical utility of the method using examples of FTG data acquired over the Vinton Salt Dome, Louisiana, USA and basalt flows in the Faeroe‐Shetland Basin, UK. A major benefit of the method is the ability to quickly construct depth maps. Such results are used to produce best estimate initial depth to source maps that can act as initial models for any detailed quantitative modelling exercises using 2D/3D forward/inverse modelling techniques.  相似文献   

8.
In this paper, we present a case study on the use of the normalized source strength (NSS) for interpretation of magnetic and gravity gradient tensors data. This application arises in exploration of nickel, copper and platinum group element (Ni‐Cu‐PGE) deposits in the McFaulds Lake area, Northern Ontario, Canada. In this study, we have used the normalized source strength function derived from recent high resolution aeromagnetic and gravity gradiometry data for locating geological bodies. In our algorithm, we use maxima of the normalized source strength for estimating the horizontal location of the causative body. Then we estimate depth to the source and structural index at that point using the ratio between the normalized source strength and its vertical derivative calculated at two levels; the measurement level and a height h above the measurement level. To discriminate more reliable solutions from spurious ones, we reject solutions with unreasonable estimated structural indices. This method uses an upward continuation filter which reduces the effect of high frequency noise. In the magnetic case, the advantage is that, in general, the normalized magnetic source strength is relatively insensitive to magnetization direction, thus it provides more reliable information than standard techniques when geologic bodies carry remanent magnetization. For dipping gravity sources, the calculated normalized source strength yields a reliable estimate of the source location by peaking right above the top surface. Application of the method on aeromagnetic and gravity gradient tensor data sets from McFaulds Lake area indicates that most of the gravity and magnetic sources are located just beneath a 20 m thick (on average) overburden and delineated magnetic and gravity sources which can be probably approximated by geological contacts and thin dikes, come up to the overburden.  相似文献   

9.
This paper presents a new inversion method for the interpretation of 2D magnetic anomaly data, which uses the combination of the analytic signal and its total gradient to estimate the depth and the nature (structural index) of an isolated magnetic source. However, our proposed method is sensitive to noise. In order to lower the effect of noise, we apply upward continuation technique to smooth the anomaly. Tests on synthetic noise-free and noise corrupted magnetic data show that the new method can successfully estimate the depth and the nature of the causative source. The practical application of the technique is applied to measured magnetic anomaly data from Jurh area, northeast China, and the inversion results are in agreement with the inversion results from Euler deconvolution of the analytic signal.  相似文献   

10.
本文提出归一化总水平导数法,通过对总水平导数进行空间归一化计算实现了异常体水平位置和深度的估计,此外还推导出基于归一化总水平导数的欧拉反褶积法来估算地下地质体的空间位置,两种方法反演结果的相互验证可有效地提高反演结果的可信度.理论模型试验证明空间归一化总水平导数法和归一化总水平导数欧拉反褶积法均能有效地完成异常体的水平位置和深度的估计,所获得的位置参数与理论值相一致.在利用归一化总水平导数法进行磁异常解释时,对数据进行化磁极计算可得到更加准确的结果.将其应用于实际航磁数据的解释,获得了岩脉的大致分布特征.  相似文献   

11.
The magnetic anomaly due to a long tabular body usually consists of a maximum and a minimum. The distances and the amplitudes of the maximum and the minimum, when defined in dimensionless quantities, may be used as characteristics of the source. In this paper, a method based on the positions of the maximum and the minimum on the magnetic anomaly due to a long tabular body has been presented. Characteristic ratios,D andA involving the distances and amplitudes of the maximum and the minimum points on the anomaly curve are defined. Nomograms showing the variations ofD andA with the parameters of (1) the dike and (2) the vertical fault models are presented. The parameters of the causative source are evaluated from the two ratiosD andA and the nomograms, using some simple analytical relations presented here. From the nomograms, it is observed that (a) for a thick dike,A is always greater thanD, (b)A=D for a thin sheet and (c) for a vertical fault,A is always less thanD. Thus from the characteristic ratiosD andA it is possible to evaluate the source parameters and also to distinguish whether the source is a dike, sheet or a vertical fault. The method is fast and is applicable for the magnetic anomalies either in total, vertical or horizontal component. The method has been applied on two field examples and the results are found to be in close agreement with those obtained by using other methods. A simple method of locating the origin on the anomaly curve is included. The limitations of the method are also discussed.  相似文献   

12.
We presented a new method for interpreting 2D magnetic data, called direct analytic signal (DAS) method, which directly used the analytic signal of magnetic anomaly to compute the depth and the structural index of the source. The DAS method needs only the computation of the first order derivatives of magnetic anomaly, so that the inversion results are more stable than the results obtained by the other existing analytic signal methods. The DAS method is tested on synthetic magnetic data with and without noise, and the DAS method can successfully obtain the depth and the structural index of the source. We also applied the DAS method to interpret a real magnetic data over a shallow geological source whose source parameters are known from closely drilling information, and the inversion results are in accord with the true values.  相似文献   

13.
In this paper, we describe a non‐linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low‐pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters – horizontal position, depth to the top, dip angle, width and susceptibility contrast – can be estimated by non‐linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg‐Marquardt algorithm together with the trust‐region‐reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Särna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.  相似文献   

14.
The major advantage of using either the analytic‐signal or the Euler‐deconvolution technique is that we can determine magnetic‐source locations and depths independently of the ambient earth magnetic parameters. In this study, we propose adopting a joint analysis of the analytic signal and Euler deconvolution to estimate the parameters of 2D magnetic sources. The results can avoid solution bias from an inappropriate magnetic datum level and can determine the horizontal locations, depths, structural types (indices), magnetization contrasts and/or structural dips. We have demonstrated the feasibility of the proposed method on 2D synthetic models, such as magnetic contacts (faults), thin dikes and cylinders. However, the method fails to solve the parameters of magnetic sources if there is severe interference between the anomalies of two adjacent magnetic sources.  相似文献   

15.
A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott–Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast.Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP).The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott–Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott–Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio.The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.  相似文献   

16.
We have developed a least-squares method to determine simultaneously the depth and the width of a buried thick dipping dike from residualized magnetic data using filters of successive window lengths. The method involves using a relationship between the depth and the half-width of the source and a combination of windowed observations. The relationship represents a family of curves (window curves). For a fixed window length, the depth is determined for each half-width value by solving one nonlinear equation of the form f (z) = 0 using the least-squares method. The computed depths are plotted against the width values representing a continuous curve. The solution for the depth and the width of the buried dike is read at the common intersection of the window curves. The method involves using a dike model convolved with the same moving average filter as applied to the observed data. As a result, this method can be applied to residuals as well as to measured magnetic data. Procedures are also formulated to estimate the amplitude coefficient and the index parameter. The method is applied to theoretical data with and without random errors. The validity of the method is tested on airborne magnetic data from Canada and on a vertical component magnetic anomaly from Turkey. In all cases examined, the model parameters obtained are in good agreement with the actual ones and with those given in the published literature.  相似文献   

17.
重磁异常解释的归一化局部波数法   总被引:3,自引:2,他引:1       下载免费PDF全文
局部波数法是进行重磁数据解释的常用方法之一.本文提出归一化局部波数法,该方法在不需要任何关于地质体信息的前提下能有效地完成异常的反演工作,且给出了不同归一化方式的应用效果.理论模型试验表明归一化局部波数法能准确地完成异常的反演,且通过对比发现其他归一化方式(中值、几何平均和调和平均)的计算结果相对算术平均归一化结果具有更高的分辨率.将该方法应用于实测磁异常的解释,获得了未知地质体的空间位置.  相似文献   

18.
欧拉反褶积与解析信号相结合的位场反演方法   总被引:2,自引:2,他引:2       下载免费PDF全文
由于解析信号具有不受(二维)或少受磁化方向影响,能够较好反映磁性体边界的特性,因此受到人们的重视.欧拉反褶积法可以确定场源的位置和深度以及形状因子,具有较强的适应性.因此前人提出将二者相结合的方法.针对前人提出的方法中存在受高频干扰严重的问题,本文提出低阶的欧拉反褶积与解析信号相结合的位场反演方法.本方法在反演中只需计...  相似文献   

19.
The estimation of the depth to the top and bottom of a magnetic source from magnetic data defines a nonlinear inverse problem, while the evaluation of the distribution of magnetization determines a linear inverse problem. In this paper, these interpretation problems are resolved in the continuous case of 21/2D magnetized bodies with lateral magnetization variations. A formulation of the magnetic problem accounting for different directions of remanent and total magnetization vectors and including a more general definition of apparent susceptibility is presented. Differences between 2D and 21/2D formulations are stressed, as regards the anomaly amplitude, shape and zero-level.In order to utilize well-known continuous linear inverse methods, Fréchet derivatives of the data functionals with respect to the depth of the source top and bottom, are analytically described. Thus, using the spectral expansion inverse method (Parker, 1977) and linearizing the problem at several steps of an iterative process, the source depth is obtained within a few iterations, although the starting model is distant from the final solution. The interpretation of an anomaly in the Italian region shows the usefulness of the method.  相似文献   

20.
A fast imaging technique is developed to deduce the spatial conductivity distribution in the earth from low-frequency (> 1 MHz) cross-well electromagnetic measurements. A sinusoidally oscillating, vertically orientated, magnetic dipole employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3D vector problem to a more manageable 2D scalar form. Additional efficiency is obtained by using the Born series approximation which is derived from nonlinear integral equations that account for the scattered magnetic fields generated by inhomogeneities embedded in a layered earth. Stabilization of the inversion problem is accomplished through the use of bounding constraints and a regularization method which results in a smooth model that fits the data to the desired noise level. The applicability of cross-well electromagnetics for imaging and monitoring changes caused by subsurface processes has been tested by simulating plumes of conductive fluid with 2D models. The images that result from inverting these synthetic data indicate that the vertical resolution of the method is better than the horizontal, increasing the noise decreases the image resolution, and incorporating a priori knowledge in the form of positivity constraints improves the results. Although higher operating frequencies are usually associated with better resolution, frequencies as low as 100 Hz can produce acceptable images in simulated oilfield environments. The imaging scheme has been applied to data collected during a salt-water injection experiment at the Richmond Field Station test site in Richmond, California. Both the data and the resulting images clearly reveal the presence of the plume and indicate that it is migrating towards the north-northwest rather than spreading symmetrically about the injection well. Applying the imaging code to synthetic data generated by a 3D sheet model verifies the interpretation of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号