首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
2.
Analysisofforeshocksequenceofthe1975HaichengearthquakeofMs7.3Zhao-RongZUO(左兆荣);Jian-PingWU(吴建平)andZhi-LingWU(巫志玲)(Instituteof...  相似文献   

3.
INTRODUCTIONThe method of probabilistic seismic risk analysis was proposed by Cornell in1968(Cornell,1968).After more than30years development,it has become the main method for seismic riskassessment of engineering sites and seismic zonation,and has been u…  相似文献   

4.
Mathematicalmodellingofnonlinearbehaviourofseismicity杨立明,石特临,郭大庆Li-MingYANG;Te-LinSHIandDa-QingGUO(EarthquakeResearchInstitut...  相似文献   

5.
In the past decade, the most authoritative catalogues of Chinese earthquakes and the most popular with seismologists in China are the following:(1) Gu Gongxu, 1983, Catalogue of Chinese Earthquakes;(2) Min Ziqun, 1988, Concise Catalogue of Chinese Earthquakes;(3) Xie Yusuou, 1989, Catalogue of Chinese Earthquakes (M≥ 4.7) from 1900-1980 with Uniform Magnitudes; and(4) Min Ziqun, 1995, Catalogue of Chinese Historical Strong Earthquakes. Earthquakes that occurred before 1900 are mainly documented in historical records.Since 1950s, more recent earthquakes were documented in two major compilations of historical records finished in 1956 and 1983-1987. Separately this effort resulted in two chronicles: two volumes for the first one and five volumes for the second one. The magnitudes are converted from the maximum intensity. These magnitudes, by convention, are connected with surface wave magnitudes. However, it is clear that they do not have any strict seismological definition.The period of 1900-1962 documen  相似文献   

6.
A method of estimation of occurrence probability of earthquake intensity at a given site from the results of a ten-year scale of earthquake prediction described with a probability of occurrence in a given "prediction cell" is proposed in this paper. 2316 cities and towns in China were analyzed by using this method. The probability of intensity Ⅵ-Ⅸ were given for every city. These results can be used for the earthquake insurance, loss estimation, and planning of disaster protection.  相似文献   

7.
Estimation of seismic hazard for the fast developing coastal area of Pakistan is carried out using deterministic and probabilistic approaches. On the basis of seismotectonics and geology, eleven faults are recognized in five seismic provinces as potential hazard sources. Maximum magnitude potential for each of these sources is calculated. Peak ground acceleration (PGA) values at the seven coastal cities due to the maximum credible earthquake on the relevant source are also obtained. Cities of Gwadar and Ormara with acceleration values of 0.21g and 0.25g respec-tively fall in the high seismic risk area. Cities of Turbat and Karachi lie in low seismic risk area with acceleration values of less than 0.1g. The Probabilistic PGA maps with contour interval of 0.05g for 50 and 100 years return period with 90% probability of non-exceedance are also compiled.  相似文献   

8.
GeographicaldistributionofhypocentraldepthsofChineseearthquakesXING-BEIDUAN(段星北)InstituteofGeophysical,StateSeismologicalBur...  相似文献   

9.
Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed.  相似文献   

10.
The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statistical zone scenarios.The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too.It can be seen that for those local sites along zone‘s border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.  相似文献   

11.
During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles’ maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the “launching” kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum “launching” conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.  相似文献   

12.
An interdisciplinary approach correlating magnetic anomalies with composition of the ejecta in each eruption, as well as with seismicity, was used to study the effect of magmatic activity on the local magnetic record at Popocatépetl Volcano located 65 km southeast of México City. Eruptions began on December, 1994, and have continued with dome growth and ash emissions since then. The Tlamacas (TLA) geomagnetic total field monitoring station, located 5 km away from Popocatépetl’s crater, was installed in December, 1997, in order to detect magnetic anomalies induced by this activity.Spatial correlation and weighted difference methods were applied to detect temporal geomagnetic anomalies using TLA’s record and the Teoloyucan Magnetic Observatory as a reference station. Weighted differences were applied to cancel the effects of non-vulcanogenic external field variations. Magnetic anomalies over a 2-year time span were classified into four types correlating them with geochemical, seismic and visual monitoring of the volcanic activity. Magnetic anomalies are believed to be caused by magma injection and gas pressure build-up, which is sensitive to vent morphology and clearing during eruption, although some anomalies appear to be thermally related, changes in the stress field are very important. Most magnetic anomalies are short time signals that reverse to baseline level. Decreasing anomalies (−0.5 to −6.8 nT) precede eruptions by 1–8 days.The presence of a mafic magmatic component was determined by mineral examination and silica and magnesium analyses on the ejecta from the 1997–1999 eruptions. Whole rock analyses ranged from dacitic (65% SiO2) to andesitic (57% SiO2) with 2–6.6% MgO. The higher MgO, lower silica samples contain forsteritic olivine (Fo90). SiO2 does not increase and MgO does not increase with time, suggesting ascent of small magma pulses which are consistent with the magnetic data.  相似文献   

13.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

14.
The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.  相似文献   

15.
We analyse the seismic catalogue of the local earthquakes which occurred at Somma-Vesuvius volcano in the past three decades (1972–2000). The seismicity in this period can be described as composed of a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analysis of the b value in the whole period evidences a well-defined pattern, with values of b progressively decreasing, from about 1.8 at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identify a substructure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for most of the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro-earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit the outlining of any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a generally increasing trend in the seismic activity in the volcanic system and by a significant volumetric component of recent major events, thus posing serious concern for a future evolution towards eruptive activity.  相似文献   

16.
Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April–30 June 1997 (Eruption 1; VEI ~ 2–3); 11 December 2000–23 January 2001 (Eruption 2; VEI ~ 3–4) and 7 June–4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred in the past, it is necessary to verify the real capability of the model for future eruptive events.  相似文献   

17.
 We analyzed more than 1700 earthquakes related to the 1982 eruption of El Chichon volcano in southern Mexico. The data were recorded at specific periods throughout the whole eruptive interval of March to April 1982, by three different networks. The seismic activity began several months before the first eruption on 28 March. During this period the seismicity consisted of hybrid and long-period shallow earthquakes most likely related to processes of faulting, fracturing, and fluid movement underneath the volcano. The foci of events occurring before the eruption circumscribe an aseismic zone from approximately 7 to 13 km below the volcano. After the eruption, the seismic activity consisted of tectonic-type earthquakes that peaked at 1200 events/h. This later activity occurred over a wide range of depths, mostly between 5 and 20 km, that includes the former aseismic zone and is roughly limited by the major tectonic faults in the area. Received: 19 May 1998 / Accepted: 13 June 1999  相似文献   

18.
Premonitory phases (seismic quiescence and foreshock activity) have been retrospectively identified before the Neftegorsk and Uglegorsk earthquakes using the RTL technique. The probabilities that these phases were accidental are less than 1 and 2%, respectively. This allows an optimistic assessment of the possibility of applying this technique to seismicity at Sakhalin. The estimates of the time and energy class for the two earthquakes, using a model of self-organized seismic criticality, proved to be unconvincing because obvious acceleration of the seismic process prior to these seismic events did not occur. The applicability of this approach to the seismicity at Sakhalin should be tested for future large earthquakes. The regional Sakhalin catalog for 1980–2000, with a lowest completely reported energy class of K = 8 (lent by the Geophysical Service, Russian Academy of Sciences) was used as the database for this study.  相似文献   

19.
Citlaltépetl or Pico de Orizaba is the highest active volcano in the North American continent. Although Citlaltépetl is at present in repose, its eruptive history reveals repetitive explosive eruptions in the past. Its relatively low eruption rate has favored significant population growth in areas that may be affected by a potential eruptive activity. The need of some criteria for hazards assessment and land-use planning has motivated the use of statistical methods to estimate the time and space distribution of volcanic hazards around this volcano. The analysis of past activity, from late Pleistocene to historic times, and the extent of some well-identified deposits are used to calculate the recurrence probabilities of eruptions of various size during time periods useful for land-use planning.  相似文献   

20.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号