首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
In order to evaluate the risk associated by an earthflow to abruptly evolve into a torrential flow, the knowledge of its internal structure is necessary. Geotechnical methods are important to reach this goal. However, because of the rough topography associated with earthflows, their surface heterogeneities, and the spatial variations of the thickness of the potentially moving mass, non-intrusive geophysical methods offer a very useful tool that complements traditional geotechnical methods. We report the results of a comprehensive study covering a 150 m by 200 m area of the Super Sauze earthflow. This earthflow developed in black marls in the southern French Alps. Shallow electrical conductivity investigations, derived using low frequency domain electromagnetics, maps hidden gullies and crests and lateral variations of the clay and the water content within the first 5 m below the ground surface. Electrical resistivity tomography allows to extrapolate this information down to 10 m below the ground surface along selected transects. The vertical structure of the earthflow, down to the substratum, is defined precisely thanks to joint inversion of DC and TDEM vertical soundings along one profile: the flowing upper layer and the position of the substratum are clearly evidenced. Combining this geophysical datasets with geotechnical tests and drill holes, we provide an estimate of both the location and the volume of the potentially most dangerous areas of the earthflow.  相似文献   

2.
Hydrogeological investigations were carried out in an arid area of Inner-Mongolia to determine the locations of future water supply resources. The first geophysical survey was conducted near Baiqi to identify favorable boreholes using magnetic resonance sounding (MRS). The yield capacities of 43 sites were investigated, and the extent of the potential groundwater storage was determined. Previous studies have indicated that a major tectonic structure may have a significant impact on the groundwater flow and well yield in the study area. Therefore, high-resolution seismic surveys were applied in the second stage of the investigation to determine the fault locations. After the regional identification, a major structure was investigated in detail to map the fracture patterns. Based on the assumption that the hydraulic conductivity of this formation is similar along the entire strike of the fracture, we proposed drilling a borehole (BQ3) in the zone. However, this well has a yield of only 0.8 L/s, falling short of the required flow rate of 3.0 L/s. Therefore, the objective of the final stage of exploration was to accurately define the attitude and extension of the aquifer and to select a more favorable borehole site that would meet the required water flow rate. The geophysical exploration was carried out using time-domain electromagnetic (TDEM) and MRS methods. The MRS results suggest optimal locations for water supply boreholes within the subsurface structures mapped by the TDEM inversion method. The data obtained by drilling and coring are in agreement with the predicted aquifer thickness from the TDEM data. Pumping tests indicate that the water discharge of borehole BQ4 was 3.5 L/s. Our results demonstrate that the delineation of the groundwater body using a combined application of three geophysical methods (the MRS, TDEM and 2D seismic methods) was successful.  相似文献   

3.
In this paper, evidence is presented that the combination of geospectral images and geophysical signatures (resistivity–velocity cross-plots) is a good tool to provide a natural visualization of the distribution and variations of lithological features in a test site. This was confirmed by the correlation between the electrical resistivity and seismic velocity values obtained after cross-gradient joint inversion at two profiles and geotechnical information provided by shallow boreholes in a site located in the Earth Sciences School grounds in Linares, Northeastern Mexico. The results obtained from this study show how the cross-gradient joint inversion facilitates the analysis of hydrological estimates and assists in lithological classification of subsurface materials.  相似文献   

4.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

5.
为了有效解决目前大地电磁和地震走时资料单方法反演结果一致性不好的问题,同时克服基于岩石不同物性参数间关系耦合约束联合反演的局限性,本文研究了基于交叉梯度耦合约束的大地电磁与地震走时资料的三维联合反演算法.以较为成熟的天然地震走时资料三维正反演和大地电磁三维正反演算法为基础,实现了具有共同的反演网格,以交叉梯度结构耦合约束,并能同时获得电阻率和速度模型的三维联合反演算法.分别利用单棱柱体模型和双棱柱体模型合成数据进行了联合反演试算.结果表明:无论是单棱柱体模型还是双棱柱体模型,联合反演结果比单独反演对异常体的空间形态都有更好的恢复,其中单棱柱体模型反演的异常体电阻率更接近于真实电阻率,双棱柱体模型的联合反演结果不仅消除了围岩的部分电阻率假异常,而且增强了对异常体深部速度结构特征的恢复程度.联合反演还能同时改善电阻率和速度反向变化异常体的单独反演结果,进一步证明交叉梯度耦合不依赖于岩石物性关系,而强调地下结构的相似性,具有更普遍的适用性.  相似文献   

6.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Airborne time domain electromagnetic (TDEM) surveys are increasingly carried out in anthropized areas as part of environmental studies. In such areas, noise arises mainly from either natural sources, such as spherics, or cultural sources, such as couplings with man-made installations. This results in various distortions on the measured decays, which make the EM noise spectrum complex and may lead to erroneous inversion and subsequent misinterpretations. Thresholding and stacking standard techniques, commonly used to filter TDEM data, are less efficient in such environment, requiring a time-consuming and subjective manual editing. The aim of this study was therefore to propose an alternative fast and efficient user-assisted filtering approach. This was achieved using the singular value decomposition (SVD). The SVD method uses the principal component analysis to extract into components the dominant shapes from a series of raw input curves. EM decays can then be reconstructed with particular components only. To do so, we had to adapt and implement the SVD, firstly, to separate clearly and so identify easily the components containing the geological signal, and then to denoise properly TDEM data.The reconstructed decays were used to detect noisy gates on their corresponding measured decays. This denoising step allowed rejecting efficiently mainly spikes and oscillations. Then, we focused on couplings with man-made installations, which may result in artifacts on the inverted models. An analysis of the map of weights of the selected “noisy components” highlighted high correlations with man-made installations localized by the flight video. We had therefore a tool to cull most likely decays biased by capacitive coupling noises. Finally, rejection of decays affected by galvanic coupling noises was also possible locating them through the analysis of specific SVD components. This SVD procedure was applied on airborne TDEM data surveyed by SkyTEM Aps. over an anthropized area, on behalf of the French geological survey (BRGM), near Courtenay in Région Centre, France. The established denoising procedure provides accurate denoising tools and makes, at least, the manual cleaning less time consuming and less subjective.  相似文献   

8.
交叉梯度联合反演方法通过对多种地球物理模型实现结构耦合,在岩石物性关系不确定的情况下,既能提高反演结果的可靠性,又能减少反演的多解性,还能减少不同方法解释结果之间的矛盾.当不同的模型观测数据覆盖范围不一致时,交叉梯度联合反演通常需要取出重叠区域数据进行联合反演,并且建模时还要扩展一些模型范围.本文首先提出并实现了部分区域约束下的交叉梯度多重地球物理数据联合反演算法;接着进行了算法的模型试算;最后,我们将该反演算法用于本溪—集安深部地质调查重磁电综合地质地球物理解释中.结果表明:该算法不但能在重叠区域内很好地恢复结构相似的模型,而且在非重叠区域与重叠区域的边界处仍然可以得到平滑变化的模型;在本溪—集安10号剖面所获得的结构上相似的电阻率、密度及磁化率模型较好地反映了该区的深部地质结构,对于确定深部地质体的性质提供了有力的证据.  相似文献   

9.
The Nuclear Magnetic Resonance (NMR) method is the only physical tool currently available which is able to detect directly the presence of fresh water in the subsurface. The Time Domain Electromagnetic (TDEM) method, in turn, has been proven highly efficient in detecting saline groundwater. The combined application of these two methods is the most promising way to delineate accurately groundwater-bearing aquifers and to evaluate the quality of the water. This idea was tested during the feasibility study carried out under different hydrogeological conditions throughout Israel during August–September 1992. The Russian Hydroscope and Geonics PROTEM-IV instruments were used for the NMR and TDEM measurements, respectively.A total of 36 NMR and 12 TDEM stations was established, mostly in close proximity to existing observation wells. Among these only 19 NMR measurements showed reasonable signal-to-noise characteristics, while the rest were obviously distorted by ambient noise. The number of distorted measurements could have been even greater had they been carried out at all points planned. However, a significant number of the NMR stations were cancelled due to their proximity (less than 1–1.5 km) to electric power lines. As a result almost the entire Mediterranean coast of Israel, which was originally chosen as the main test site for this survey, turned out to be unsuitable owing to the low ambient noise protection of the Hydroscope. Another serious limitation of NMR measurements is the maximum penetration depth. The deepest information obtained during the feasibility study was from a depth of 74 m.Nevertheless, within the framework of its applicability, the NMR measurements proved to be sufficiently accurate and to have a high resolving capability. A comparison with the borehole data shows that, in most cases, NMR is able not only to detect the presence of water, but also to delineate different subaquifers. At the same time, however, the transmissivity and aquifer texture are much less reliably detected. The combined application of the NMR and TDEM methods may essentially improve the reliability of the interpretation. In all cases where the NMR anomaly fits the drop in TDEM resistivity, water of a different salinity is found at approximately the same depth. A reasonable correlation between the interpreted resistivities and water salinities is obtained for these horizons. However, if only one method indicates the presence of water, this, in many cases, was not confirmed by the borehole data. The TDEM anomalies were obviously caused by low-resistivity lithologies, while some of the false NMR signals could be explained by a low signal-to-noise ratio.As regards the freshwater/seawater interface, this was, in all cases, accurately detected by the TDEM measurements alone. It is interesting to note that at the same depth, NMR measurements indicated a drastically increasing anomaly followed by the absence of water at greater depths. The latter can most likely be explained by the very low resistivity of the sea water, which is not taken into account by the existing NMR interpretation.  相似文献   

10.
Seismic and geoelectric methods are often used in the exploration of near-surface structures. Generally, these two methods give, independently of one other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which leads to much better parameter estimations of the near-surface underground than the independent inversions. In the companion paper (Part I: basic ideas), it was demonstrated theoretically that a joint inversion, using dispersive Rayleigh and Love waves in combination with the well-known methods of DC resistivity sounding, such as Schlumberger, radial dipole-dipole and pole-pole arrays, provides a better parameter estimation. Two applications are shown: a five layer structure in Borsod County, Hungary, and a three-layer structure in Thüringen, Germany. Layer thicknesses, wave velocities and resistivities are determined. Of course, the field data sets obtained from the ‘real world’ are not as complete and as good as the synthetic data sets in the theoretical Part I. In both applications, relative model distances, in percentages, serve as quality control factors for the different inversions; the lower the relative distance, the better the inversion result. In the Borsod field case, Love wave group slowness data and Schlumberger, radial dipole-dipole and pole-pole (i.e two-electrode) data sets are processed. The independent inversion performed using the Love wave data leads to a relative model distance of 155%. An independent Schlumberger inversion results in 41%, a joint geoelectric inversion of all data sets in 15%, a joint inversion of Love wave data and all geoelectric data sets in 15% and the robust joint inversion of Love wave data and the three geoelectric data sets in 10%. In the Thüringen field case, only Rayleigh wave group slowness data and Schlumberger data were available. The independent inversion using Rayleigh wave data results in a relative model distance of 19%. The independent inversion performed using Schlumberger data leads to 34%, the joint and robust joint inversion of Rayleigh wave and Schlumberger data gave results of 18% and 20%, respectively.  相似文献   

11.
Local site effect microzonation of Lorca town (SE Spain)   总被引:1,自引:0,他引:1  
Local site effect assessment based on subsurface ground conditions is often the key to evaluate urban seismic hazard. The site effect evaluation in Lorca town (south-eastern Spain) started with a classification of urban geology through the geological mapping at scale 1:10,000 and the use of geotechnical data and geophysical surveys. The 17 geological formations identified were classified into 5 geological/seismic formations according to their seismic amplification capacity obtained from ambient vibration measurements as well as from simultaneous strong motion records. The shear-wave velocity structure of each geological/seismic formation was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. Nakamura’s method was applied to determine a predominant period distribution map. The spectral amplification factors were fourfold the values recorded in a reference hard-rock site. Finally, the capability of this study for explaining the damage distribution caused by the May 11th, 2011 Lorca destructive earthquake (Mw \(=\) 5.2) was examined. The methods used in this work are of assistance to evaluate ground amplification phenomena in urban areas of complex geology as Lorca town due to future earthquakes with applicability on urban seismic risk management.  相似文献   

12.
Pointe-à-Pitre, the main city of Guadeloupe in the French West Indies, has on several occasions been partially destroyed by major historical earthquakes. Moreover, a post-seismic assessment of the damage from the 1985 Montserrat earthquake indicates that the town is prone to site effects. Consequently, from 1996 to 1998, BRGM conducted a seismic microzonation study based on geotechnical and geological data. At the same time, three seismological studies were being conducted – two based on earthquake recordings using a time-series analysis and the classical spectral ratio (CSR) method (CETE/LCPC and BRGM), and the third based on noise measurement at 400 points using the horizontal-to-vertical noise ratio (HVNR) method (CETE/LCPC). The objective of this paper is not to carry out a new microzonation study by taking into account all the results, but rather to show in what respects the results of these different methods are in agreement or not. A comparison of the results of the seismological studies with the geotechnical microzonation shows that they are in fairly good agreement, albeit with some discrepancies. The results indicate that the seismological methods and the geotechnical data are highly complementary and should be used together in compiling seismic transfer-function microzonation maps. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In the context of wide-angle seismic profiling, the determination of the physical properties of the Earth crust, such as the elastic layer depth and seismic velocity, is often performed by inversion of P- and/or S-phases propagation data supplying the geometry of the medium (reflector depths) or any other structural parameter (P- or S-wave velocity, density...). Moreover, the inversion for velocity structure and interfaces is commonly performed using only seismic reflection travel times and/or crustal phase amplitudes in isotropic media. But it is very important to utilize more available information to constrain the non-uniqueness of the solution. In this paper, we present a simultaneous inversion method of seismic reflection travel times and polarizations data of transient elastic waves in stratified media to reconstruct not only layer depth and vertical P-wave velocity but also the anisotropy feature of the crust based on the estimation of the Thomsen’s parameters. We carry out a checking with synthetic data, comparing the inversion results obtained by anisotropic travel-time inversion to the results derived by joint inversion of seismic reflection travel times and polarizations data. The comparison proves that the first procedure leads to biased anisotropic models, while the second one fits nearly the real model. This makes the joint inversion method feasible. Finally, we investigate the geometry, P-wave velocity structure and anisotropy of the crust beneath Southeastern China by applying the proposed inversion method to previously acquired wide-angle seismic data. In this case, the anisotropy signature provides clear evidence that the Jiangshan-Shaoxing fault is the natural boundary between the Yangtze and Cathaysia blocks.  相似文献   

14.
Time domain electromagnetic (TDEM) response is usually associated with eddy currents in conductive bodies, since this is the dominant effect. However, other effects, such as displacement currents from dielectric processes and magnetic fields associated with rock magnetization, can contribute to TDEM response. In this paper we analyze the effect of magnetization on TDEM data. We use a 3-D code based on finite-difference method, developed by Wang and Hohmann [Geophysics 58 (1993) 797], to study transient electromagnetic field propagation through a medium containing bodies with both anomalous conductivity and anomalous magnetic permeability. The remarkable result is that the combination of anomalous conductivity and permeability within the same body could increase significantly the anomalous TDEM response in comparison with purely conductive or purely magnetic anomalies. This effect has to be taken into account in interpretation of TDEM data over electrical inhomogeneous structures with potentially anomalous magnetic permeability.  相似文献   

15.
基于交叉梯度结构约束的不同数据的联合反演可以提高地球物理成像的可靠度,但是由于不同观测数据对地下介质的灵敏度不同以及不同反演系统灵敏度矩阵元素的数值可能存在较大的差异,导致构建和求解联合反演系统存在很大的挑战.针对以上问题,本文提出一种新的基于单独反演模型更新量与交叉梯度结构约束相结合的联合反演策略.该策略利用单独反演系统分别确定出各个模型的更新量,然后利用它们约束交叉梯度系统的反演,得出新的模型更新量.通过这样的方式,有效实现了数据拟合与结构约束的平衡,实现了基于交叉梯度联合反演的目标.新的联合反演策略不需要对原来单独反演程序修改即可实现联合反演,减小了联合反演实现的难度,极大地提高了联合反演的易实现性,而且避免了联合反演矩阵存储及结构过于复杂难以求解的问题.基于新的策略,本文首次实现了基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演.合成模型测试表明,与单一成像相比,联合成像减少了地震走时反演中出现的干扰异常并提高了电阻率反演的分辨率.  相似文献   

16.
Fast S-inversion is a method of interpretation of time-domain electromagnetic (TDEM) sounding data using the thin sheet model approach. Within the framework of this method, the electromagnetic (EM) response measured at the surface of the earth at every time delay is matched with that of a thin sheet model. The conductivity change with depth is obtained using the conductance, S, and depth, d, of the equivalent thin sheet. We analyze two different numerical techniques, the differential S-transformation and the regularized S-inversion, to determine the parameters of the thin sheet. The first technique is a direct differential transformation of the observed data into conductance and depth values. It is fast and requires no iterations or starting model. The second technique uses a regularized inversion scheme to fit the measured response with that of a thin sheet. In both techniques, the retrieved conductance values are differentiated with respect to depth to obtain the conductivity change with depth. We apply S-inversion to three-dimensional synthetic data and we successfully locate the local conductors. We also demonstrate a case history by interpreting TDEM data obtained at the Nojima fault zone in Japan. The results clearly indicate the location of the fault zone.  相似文献   

17.
Horizontally layered (1D) earth models are often assumed as a model estimate for the interpretation of geophysical data measured along 2D geological structures. In this process, the individual data sets are usually inverted independently, and it is considered only in a later phase of interpretation that these local (1D) models have common characteristic features. Taking account of these common attributes, instead of the successive independent interpretations, the lateral variations of geometrical and petrophysical parameters can be efficiently determined for the whole 2D structure by applying a series expansion. Using global basis functions, two advantages can be achieved: (i) choosing an appropriate number of basis functions helps us to restrict the complexity of the model; (ii) the integration of all the data sets measured along the profile gives rise to the application of simultaneous or joint inversion methods. This results in a decrease of the number of independent unknowns, a higher stability during the inversion and a more accurate and reliable parameter estimation.In this paper, a joint inversion algorithm is presented using DC geoelectric apparent resistivities and refraction seismic travel times measured along various layouts above a 2D geological model. To describe lateral variations series, expansions are used, and furthermore, to improve the often used approximation of a (locally) 1D forward modelling, the integral mean value of the horizontally changing model parameters (calculated along an appropriately defined interval) is introduced. We call the inversion procedure that combines series expansions and the concept of integral mean Generalised Series Expansion (GSE) inversion. The method was developed and tested for both the simultaneous (integrating data sets of one method or methods on the same physical basis) and the joint inversion (where data sets of methods on different physical bases are joined together), using synthetic and field data sets. It is also demonstrated that the equivalence problem inherent in the independent inversion of DC geoelectric data can efficiently be resolved by the use of the joint GSE inversion method in the cases of conductive and resistive equivalent geological models.  相似文献   

18.
为了准确的探测和描绘地下复杂的地质结构,同时克服地球物理单一方法反演的多解性和单一参数反演模型的不一致性等问题,近年来基于交叉梯度联合反演的综合地球物理解释已经得到了广泛的关注和应用.本文首先研究了两种地球物理方法的交叉梯度联合反演算法,在此基础上,推导并实现了多种地球物理方法(大地电磁,重力,磁法,地震初至波走时)的多交叉梯度约束的二维联合反演算法;其次,我们设计了结构不一致模型和复杂模型,针对多物性联合反演算法的准确性和有效性进行了模拟试算,并对复杂模型的单独反演结果和联合反演结果进行了交叉梯度值和物性交会图的对比;最后,本文将成熟的卫星资料多光谱综合分析技术应用到联合反演中,将多物性参数反演模型结果图通过RGB(红-绿-蓝)模式进行合成,得到融合的RGB合成图.结果表明:通过对结构不一致模型和复杂模型的联合反演结果和单独反演结果的对比分析,可以得出联合反演得到的结果更接近真实模型,并从得到的交叉梯度值进一步证明了联合反演模型相似度高,也从物性交会图中得到联合反演的物性相关性更好的结论,反向证明了算法的正确性.最终从得到的RGB合成图像,我们可以更直观的分析反演结果,更有利于准确划分地下模型结构.  相似文献   

19.
In the paper by Pavlov and Zhdanov [J. Appl. Geophys. (2001)], we demonstrated that anomalous magnetic permeability of an ore body could result in measurable anomalous effects in TDEM data, which can be used in geophysical exploration. In the current paper, we develop a new method of TDEM data interpretation, which allows simultaneous reconstruction of both electrical and magnetic properties of the rocks. The method is based on a generalization of the S-inversion technique [66th Ann. Int. Mtg., Soc. Expl. Geophys., Expanded Abstr. (1996) 1306; 68th Ann. Int. Mtg., Soc. Expl. Geophys., Expanded Abstr. (1998) 473; J. Appl. Geophys. (1999)] for models containing thin sheets with anomalous conductivity and anomalous magnetic permeability. We call this method -inversion. Numerical 3-D modeling results demonstrate that -inversion provides useful information about both subsurface conductivity and magnetic permeability distributions. It can be used as a new tool for imaging TDEM data in mineral exploration.  相似文献   

20.
In the traditional inversion of the Rayleigh dispersion curve, layer thickness, which is the second most sensitive parameter of modelling the Rayleigh dispersion curve, is usually assumed as correct and is used as fixed a priori information. Because the knowledge of the layer thickness is typically not precise, the use of such a priori information may result in the traditional Rayleigh dispersion curve inversions getting trapped in some local minima and may show results that are far from the real solution. In this study, we try to avoid this issue by using a joint inversion of the Rayleigh dispersion curve data with vertical electric sounding data, where we use the common‐layer thickness to couple the two methods. The key idea of the proposed joint inversion scheme is to combine methods in one joint Jacobian matrix and to invert for layer S‐wave velocity, resistivity, and layer thickness as an additional parameter, in contrast with a traditional Rayleigh dispersion curve inversion. The proposed joint inversion approach is tested with noise‐free and Gaussian noise data on six characteristic, synthetic sub‐surface models: a model with a typical dispersion; a low‐velocity, half‐space model; a model with particularly stiff and soft layers, respectively; and a model reproduced from the stiff and soft layers for different layer‐resistivity propagation. In the joint inversion process, the non‐linear damped least squares method is used together with the singular value decomposition approach to find a proper damping value for each iteration. The proposed joint inversion scheme tests many damping values, and it chooses the one that best approximates the observed data in the current iteration. The quality of the joint inversion is checked with the relative distance measure. In addition, a sensitivity analysis is performed for the typical dispersive sub‐surface model to illustrate the benefits of the proposed joint scheme. The results of synthetic models revealed that the combination of the Rayleigh dispersion curve and vertical electric sounding methods in a joint scheme allows to provide reliable sub‐surface models even in complex and challenging situations and without using any a priori information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号