首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil moisture is a key hydrological variable in flood forecasting: it largely influences the partition of rain between runoff and infiltration and thus controls the flow at the outlet of a catchment. The methodology developed in this paper aims at improving the commonly used hydrological tools in an operational forecasting context by introducing soil moisture data into streamflow modelling. A sequential assimilation procedure, based on an extended Kalman filter, is developed and coupled with a lumped conceptual rainfall–runoff model. It updates the internal states of the model (soil and routing reservoirs) by assimilating daily soil moisture and streamflow data in order to better fit these external observations. We present in this paper the results obtained on the Serein, a Seine sub-catchment (France), during a period of about 2 years and using Time Domain Reflectivity probe soil moisture measurements from 0–10 to 0–100 cm and stream gauged data. Streamflow prediction is improved by assimilation of both soil moisture and streamflow individually and by coupled assimilation. Assimilation of soil moisture data is particularly effective during flood events while assimilation of streamflow data is more effective for low flows. Combined assimilation is therefore more adequate on the entire forecasting period. Finally, we discuss the adequacy of this methodology coupled with Remote Sensing data.  相似文献   

2.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   

3.
It is widely recognized that multi-year drought can induce changes in catchment hydrological behaviours. However, at present, our understanding about multi-year drought-induced changes in catchment hydrological behaviours and its driving factors at the process level is still very limited. This study proposed a new approach using a data assimilation technique with a process-based hydrological model to detect multi-year drought-induced changes in catchment hydrological behaviours and to identify driving factors for the changes in an unimpaired Australian catchment (Wee Jasper) which experienced prolonged drought from 1997 to 2009. Modelling experiments demonstrated that the multi-year drought caused a significant change in the catchment rainfall-runoff relationship, indicated by significant step changes in the estimated time-variant hydrological parameters SC (indicating catchment active water storage capacity) and C (reflecting catchment evapotranspiration dynamics), whose average values increased 23.4% and 10.2%, respectively, due to drought. The change in the rainfall-runoff relationship identified by the data assimilation method is consistent with that arrived at by a statistical examination. The proposed method provides insights about the drivers of the changes in the rainfall-runoff relationship at the processes level. Increasing catchment water storage capacity and decreasing ratio of rainfall to soil moisture for supplying actual evapotranspiration during drought are the main driving factors for the catchment behaviours change in the Wee Jasper catchment in terms of model structure. And they are related to decrease in catchment groundwater level and deep soil moisture. The proposed new method can be used as an effective technique for detecting both the change of hydrological behaviours induced by prolonged drought and its driving factors at the process level.  相似文献   

4.
ABSTRACT

In order to improve the soil moisture (SM) modelling capacity, a regional SM assimilation scheme based on an empirical approach considering spatial variability was constructed to assimilate in situ observed SM data into a hydrological model. The daily variable infiltration capacity (VIC) model was built to simulate SM in the Upper Huai River Basin, China, with a resolution of 5 km × 5 km. Through synthetic assimilation experiments and validations, the assimilated SM was evaluated, and the assimilation feedback on evapotranspiration (ET) and streamflow are analysed and discussed. The results show that the assimilation scheme improved the SM modelling capacity, both spatially and temporally. Moreover, the simulated ET was continually affected by changes in SM simulation, and the streamflow predictions were improved after applying the SM assimilation scheme. This study demonstrates the potential value of in situ observations in SM assimilation, and provides valuable ways for improving hydrological simulations.  相似文献   

5.
Data assimilation as a method to predict variables, reduce uncertainties and explicitly handle various sources of uncertainties has recently received widespread attention and has been utilized to combine in situ and remotely sensed measurements with hydrological models. However, factors that significantly influence the capability of data assimilation still need testing and verifying. In this paper, synthetic surface soil moisture data are assimilated into the Soil and Water Assessment Tool (SWAT) model to evaluate their impact on other hydrological variables via the ensemble Kalman smoother (EnKS), using data from the Heihe River Basin, northwest China. The results show that the assimilation of surface soil moisture can moderately improve estimates of deep layer soil moisture, surface runoff and lateral flow, which reduces the negative influences of erroneous forcing and inaccurate parameters. The effects of the spatially heterogeneous input data (land cover and soil type) on the performance of the data assimilation technique are noteworthy. Moreover, the approaches including inflation and localization are specifically diagnosed to further extend the capability of the EnKS.  相似文献   

6.
Data assimilation techniques have been proven as an effective tool to improve model forecasts by combining information about observed variables in many areas. This article examines the potential of assimilating surface soil moisture observations into a field‐scale hydrological model, the Root Zone Water Quality Model, to improve soil moisture estimation. The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for nonlinear systems, was applied and compared with a simple direct insertion method. In situ soil moisture data at four different depths (5, 20, 40, and 60 cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were used for assimilation and validation purposes. Through daily update, the EnKF improved soil moisture estimation compared with the direct insertion method and model results without assimilation, having more distinct improvement at the 5 and 20 cm depths than for deeper layers (40 and 60 cm). Local vertical soil property heterogeneity in AS1 deteriorated soil moisture estimates with the EnKF. Removal of systematic bias in the forecast model was found to be critical for more successful soil moisture data assimilation studies. This study also demonstrates that a more frequent update generally contributes in enhancing the open loop simulation; however, large forecasting error can prevent more frequent update from providing better results. In addition, results indicate that various ensemble sizes make little difference in the assimilation results. An ensemble of 100 members produced results that were comparable with results obtained from larger ensembles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.  相似文献   

8.
We assess the potential of updating soil moisture states of a distributed hydrologic model by assimilating streamflow and in situ soil moisture data for high-resolution analysis and prediction of streamflow and soil moisture. The model used is the gridded Sacramento (SAC) and kinematic-wave routing models of the National Weather Service (NWS) Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM) operating at an hourly time step. The data assimilation (DA) technique used is variational assimilation (VAR). Assimilating streamflow and soil moisture data into distributed hydrologic models is new and particularly challenging due to the large degrees of freedom associated with the inverse problem. This paper reports findings from the first phase of the research in which we assume, among others, perfectly known hydrometeorological forcing. The motivation for the simplification is to reduce the complexity of the problem in favour of improved understanding and easier interpretation even if it may compromise the goodness of the results. To assess the potential, two types of experiments, synthetic and real-world, were carried out for Eldon (ELDO2), a 795-km2 headwater catchment located near the Oklahoma (OK) and Arkansas (AR) border in the U.S. The synthetic experiment assesses the upper bound of the performance of the assimilation procedure under the idealized conditions of no structural or parametric errors in the models, a full dynamic range and no microscale variability in the in situ observations of soil moisture, and perfectly known univariate statistics of the observational errors. The results show that assimilating in situ soil moisture data in addition to streamflow data significantly improves analysis and prediction of soil moisture and streamflow, and that assimilating streamflow observations at interior locations in addition to those at the outlet improves analysis and prediction of soil moisture within the drainage areas of the interior stream gauges and of streamflow at downstream cells along the channel network. To assess performance under more realistic conditions, but still under the assumption of perfectly known hydrometeorological forcing to allow comparisons with the synthetic experiment, an exploratory real-world experiment was carried out in which all other assumptions were lifted. The results show that, expectedly, assimilating interior flows in addition to outlet flow improves analysis as well as prediction of streamflow at stream gauge locations, but that assimilating in situ soil moisture data in addition to streamflow data provides little improvement in streamflow analysis and prediction though it reduces systematic biases in soil moisture simulation.  相似文献   

9.
Satellite‐based soil moisture data accuracies are of important concerns by hydrologists because they could significantly influence hydrological modelling uncertainty. Without proper quantification of their uncertainties, it is difficult to optimize the hydrological modelling system and make robust decisions. Currently, the satellite soil moisture data uncertainty has been limited to summary statistics with the validations mainly from the in situ measurements. This study attempts to build the first error distribution model with additional higher‐order uncertainty modelling for satellite soil moisture observations. The methodology is demonstrated by a case study using the Soil Moisture and Ocean Salinity satellite soil moisture observations. The validation is based on soil moisture estimates from hydrological modelling, which is more relevant to the intended data use than the in situ measurements. Four probability distributions have been explored to find suitable error distribution curves using the statistical tests and bootstrapping resampling technique. General extreme value is identified as the most suitable one among all the curves. The error distribution model is still in its infant stage, which ignores spatial and temporal correlations, and nonstationarity. Further improvements should be carried out by the hydrological community by expanding the methodology to a wide range of satellite soil moisture data using different hydrological models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Grid-based distributed models have become popular for describing spatial hydrological processes. However, the influence of non-homogeneity within a grid on streamflow simulation was not adequately addressed in the literature. In this study, we investigated how the statistical characteristics of soil moisture storage within a grid impacts on streamflow simulations. The spatial variation of the topographic index, TI, within a grid was used to determine parameter B of the statistical curve of soil moisture storage in the Xinanjiang model. For comparison of influences of the non-homogeneity within a grid on streamflow simulation, two parameterization schemes of soil moisture storage capacity were developed: a grid-parameterization scheme for a distributed model and a catchment-averaged scheme for a semi-distributed model. The practicability and usefulness of the grid-parameterization method were evaluated through model comparisons. The two models were applied in Jiangwan experimental catchment Zhejiang Province, China. Streamflow discharge data at the catchment outlet from 1971 to 1986 at different temporal resolutions, e.g. 15 min and daily time step, were used for model calibration and validation. Statistical results for different grid scales demonstrated that the mean and variation of TI and B decline significantly as the grid scale increases. The simulated streamflow discharges of the two models were similar and the semi-distributed model outperformed the distributed model slightly when the streamflow at the outlet of the catchment was used as the only basis for comparison. In addition, a relatively larger bias in the predicted discharges between these two models was observed along with an abrupt increase of soil moisture saturation ratio. A further analysis of the simulated soil moisture content distribution revealed that the distributed model can provide a reasonable representation of the variable source area concept, which was justified to some extent by the field experiment data.

Editor D. Koutsoyiannis

Citation Liu, J.T., Chen, X., Wu, J.C., Zhang, X.N., Feng, D.Z. and Xu, C.-Y., 2012. Grid parameterization of a conceptual, distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability. Hydrological Sciences Journal, 57 (2), 282–297.  相似文献   

12.
Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system.  相似文献   

13.
Numerous land surface models exist for predicting water and energy fluxes in the terrestrial environment. These land surface models have different conceptualizations (i.e., process or physics based), together with structural differences in representing spatial variability, alternate empirical methods, mathematical formulations and computational approach. These inherent differences in modeling approach, and associated variations in outputs make it difficult to compare and contrast land surface models in a straight-forward manner. While model intercomparison studies have been undertaken in the past, leading to significant progress on the improvement of land surface models, additional framework towards identification of model weakness is needed. Given that land surface models are increasingly being integrated with satellite based estimates to improve their prediction skill, it is practical to undertake model intercomparison on the basis of soil moisture data assimilation. Consequently, this study compares two land surface models: the Joint UK Land Environment Simulator (JULES) and the Community Atmosphere Biosphere Land Exchange (CABLE) for soil moisture estimation and associated assessment of model uncertainty. A retrieved soil moisture data set from the Soil Moisture and Ocean Salinity (SMOS) mission was assimilated into both models, with their updated estimates validated against in-situ soil moisture in the Yanco area, Australia. The findings show that the updated estimates from both models generally provided a more accurate estimate of soil moisture than the open loop estimate based on calibration alone. Moreover, the JULES output was found to provide a slightly better estimate of soil moisture than the CABLE output at both near-surface and deeper soil layers. An assessment of the updated membership in decision space also showed that the JULES model had a relatively stable, less sensitive, and more highly convergent internal dynamics than the CABLE model.  相似文献   

14.
This study has applied evolutionary algorithm to address the data assimilation problem in a distributed hydrological model. The evolutionary data assimilation (EDA) method uses multi-objective evolutionary strategy to continuously evolve ensemble of model states and parameter sets where it adaptively determines the model error and the penalty function for different assimilation time steps. The assimilation was determined by applying the penalty function to merge background information (i.e., model forecast) with perturbed observation data. The assimilation was based on updated estimates of the model state and its parameterizations, and was complemented by a continuous evolution of competitive solutions.The EDA was illustrated in an integrated assimilation approach to estimate model state using soil moisture, which in turn was incorporated into the soil and water assessment tool (SWAT) to assimilate streamflow. Soil moisture was independently assimilated to allow estimation of its model error, where the estimated model state was integrated into SWAT to determine background streamflow information before they are merged with perturbed observation data. Application of the EDA in Spencer Creek watershed in southern Ontario, Canada generates a time series of soil moisture and streamflow. Evaluation of soil moisture and streamflow assimilation results demonstrates the capability of the EDA to simultaneously estimate model state and parameterizations for real-time forecasting operations. The results show improvement in both streamflow and soil moisture estimates when compared to open-loop simulation, and a close matching between the background and the assimilation illustrates the forecasting performance of the EDA approach.  相似文献   

15.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   

16.
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine‐resolution catchment‐wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high‐resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Artificial neural networks (ANN) are nonlinear models widely investigated in hydrology due to their properties of universal approximation and parsimony. Their performance during the training phase is very good, and their ability to generalize can be improved by using regularization methods such as early stopping and cross-validation. In our research, two kinds of generic models are implemented: the feed-forward model and the recurrent model. At first glance, the feed-forward model would seem to be more effective than the recurrent one on non-stationary datasets, because measured information on the state of the system (measured discharge) is used as input, thereby implementing a kind of data assimilation. This study investigates the feasibility and effectiveness of data assimilation and adaptivity when implemented in both feed-forward and recurrent neural networks. Based on the IAHS Workshop held in Göteborg, Sweden (July 2013), the hydrological behaviour of two watersheds of different sizes and different kind of non-stationarity will be modelled: (a) the Fernow watershed (0.2 km2) in the USA, affected by significant modifications in land cover during the study period, and (b) the Durance watershed (2170 km2) in France, affected by an increase in temperature that is causing a decrease in the extent of glaciers. Two methods were applied to evaluate the ability of ANN to adapt on the test set: (i) adaptivity using observed data to adapt parameter values in real time; and (ii) data assimilation using observed data to modify inaccurate inputs in real time. The goal of the study is thus re-analysis and not forecasting. This study highlights how effective the feed-forward model is compared to the recurrent model for dealing with non-stationarity. It also shows that adaptivity and data assimilation improve the recurrent model considerably, whereas improvement is marginal for the feed-forward model in the same conditions. Finally, this study suggests that adaptivity is effective in the case of changing conditions of the watershed, whereas data assimilation is better in the case of climate change (inputs modification).  相似文献   

19.
Jia Liu  Michaela Bray  Dawei Han 《水文研究》2013,27(25):3627-3640
The mesoscale Numerical Weather Prediction (NWP) model is gaining popularity among the hydrometeorological community in providing high‐resolution rainfall forecasts at the catchment scale. Although the performance of the model has been verified in capturing the physical processes of severe storm events, the modelling accuracy is negatively affected by significant errors in the initial conditions used to drive the model. Several meteorological investigations have shown that the assimilation of real‐time observations, especially the radar data can help improve the accuracy of the rainfall predictions given by mesoscale NWP models. The aim of this study is to investigate the effect of data assimilation for hydrological applications at the catchment scale. Radar reflectivity together with surface and upper‐air meteorological observations is assimilated into the Weather Research and Forecasting (WRF) model using the three‐dimensional variational data‐assimilation technique. Improvement of the rainfall accumulation and its temporal variation after data assimilation is examined for four storm events in the Brue catchment (135.2 km2) located in southwest England. The storm events are selected with different rainfall distributions in space and time. It is found that the rainfall improvement is most obvious for the events with one‐dimensional evenness in either space or time. The effect of data assimilation is even more significant in the innermost domain which has the finest spatial resolution. However, for the events with two‐dimensional unevenness of rainfall, i.e. the rainfall is concentrated in a small area and in a short time period, the effect of data assimilation is not ideal. WRF fails in capturing the whole process of the highly convective storm with densely concentrated rainfall in a small area and a short time period. A shortened assimilation time interval together with more efficient utilisation of the weather radar data might help improve the effectiveness of data assimilation in such cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Data-based mechanistic (DBM) models can offer a parsimonious representation of catchment dynamics. They have been shown to provide reliable accurate flood forecasts in many hydrological situations. In this work, the DBM methodology is applied to forecast flash floods in a small Alpine catchment. Compared to previous DBM modelling studies, the catchment response is rapid. The use of novel radar-derived ensemble quantitative precipitation forecasts based on analogues to drive the DBM model allows the forecast horizon to be increased to a level useful for emergency response. The characterization of the predictive uncertainty in the resulting hydrological forecasts is discussed and a framework for its representation illustrated.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号