首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Natural tracers (alkalinity and silica) were used to infer groundwater–surface‐water exchanges in the main braided reach of the River Feshie, Cairngorms, Scotland. Stream‐water samples were collected upstream and downstream of the braided section at fortnightly intervals throughout the 2001–2002 hydrological year and subsequently at finer resolution over two rainfall events. The braided reach was found to exert a significant downstream buffering effect on the alkalinity of these waters, particularly at moderate flows (4–8 m3 s?1/?Q30–70). Extensive hydrochemical surveys were undertaken to characterize the different source waters feeding the braids. Shallow groundwater flow systems at the edge of the braided floodplain, recharged by effluent streams and hillslope drainage, appeared to be of particular significance. Deeper groundwater was identified closer to the main channel, upwelling through the hyporheic zone. Both sources contributed to the significant groundwater–surface‐water interactions that promote the buffering effect observed through the braided reach. Their impact was less significant at higher flows (>15 m3 s?1/>Q10) when acidic storm runoff from the peat‐covered catchment headwaters dominated, as well as under baseflow conditions (<4 m3 s?1/<Q70), when upstream alkalinity was already buffered owing to headwater groundwater sources assuming dominance. The significant temporally and spatially dynamic influence of these groundwater–surface‐water interactions was therefore seen to have important implications for both catchment functioning and instream ecology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Lithological and hydrological influence on fluvial physical and chemical erosion was studied in a glacierized sedimentary basin with high evaporite presence. Suspended particulate matter (SPM), total dissolved solids (TDS) and major ion concentrations were analysed for 2 years of different hydrologic condition: (i) 2009–2010, Q = 100% average; and (ii) 2010–2011, Q = 60% average. Annual hydrograph was simple regime‐type with one peak in summer related to snow melting. The intra‐annual SPM and TDS variations were directly and inversely associated to Q, respectively. Snow chemistry showed continental influence (Na+/Ca2+ = 0.17), and atmospheric input of TDS was <1% of the total exported flux. River water was highly concentrated in Ca2+ and SO42− (~4 mmol l−1) and in Na+ and Cl (~3 mmol l−1). Ca2+/SO42− and Na+/Cl molar ratios were ~1 and related to Q, directly and inversely, respectively. Major ion relationships suggest that river chemistry is controlled by evaporite (gypsum and halite) dissolution having a summer input from sulfide oxidation and carbonate dissolution, and a winter input from subsurface flow loaded with silicate weathering products. This variation pattern resulted in nearly chemostatic behaviour for Ca+, Mg2+ and SO42−, whereas Na+, Cl and SiO2 concentrations showed to be controlled by dilution/concentration processes. During the 2009–2010 hydrological year, the fluxes of water, SPM and TDS registered in the snow melting–high Q season were, respectively, 71%, 92% and 67% of the annual total, whereas for equal period in 2010–2011, 56% of water, 86% of SPM and 54% of TDS annual fluxes were registered. The SPM fluxes for 2009–2010 and 2010–2011 were 1.19 × 106 and 0.79 × 106 t year−1, whereas TDS fluxes were 0.68 × 106 and 0.55 × 106 t year−1, respectively. Export rates for 2009–2010 were 484 t km2 year−1 for SPM and 275 t km2 year−1 for TDS. These rates are higher than those observed in glacierized granite basins and in non‐glacierized evaporite basins, suggesting a synergistic effect of lithology and glaciers on physical and chemical erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Storage is a fundamental but elusive component of drainage basin function, influencing synchronization between precipitation input and streamflow output and mediating basin sensitivity to climate and land use/land cover (LULC) change. We compare hydrometric and isotopic approaches to estimate indices of dynamic and total basin storage, respectively, and assess inter-basin differences in these indices across the Oak Ridges Moraine (ORM) region of southern Ontario, Canada. Dynamic storage indices for the 20 study basins included the ratio of baseflow to total streamflow (baseflow index BFI), Q 99 flow and flow duration curve (FDC) slope. Ratios of the standard deviation of the streamflow stable isotope signal relative to that of precipitation were determined for each basin from a 1 year bi-weekly sampling program and used as indicators of total storage. Smaller ratios imply longer water travel times, smaller young water fractions (F yw, < ~2–3 months in age) in streamflow and greater basin storage. Ratios were inversely related to BFI and Q 99, and positively related to FDC slope, suggesting longer travel times and smaller F yw for basins with stable baseflow-dominated streamflow regimes. Inter-basin differences in all indices reflected topographic, hydrogeologic and LULC controls on storage, which was greatest in steep, forest-covered headwaters underlain by permeable deposits with thick and relatively uniform unsaturated zones. Nevertheless, differential sensitivity of indices to controls on storage indicates the value of using several indices to capture more completely how basin characteristics influence storage. Regression relationships between storage indices and basin characteristics provided reasonable predictions of aspects of the streamflow regime of test basins in the ORM region. Such relationships and the underlying knowledge of controls on basin storage in this landscape provide the foundation for initial predictions of relative differences in streamflow response to regional changes in climate and LULC.  相似文献   

6.
Abstract

An investigation on the groundwater potentials of the Egbe-Mopa area in central Nigeria, underlain by the Basement Complex, is presented. The investigation involved mapping of the subsurface by use of vertical electrical soundings; measurement of depth to groundwater; and evaluation of hydraulic conductivity, transmissivity and yield by means of pumping test interpretation. The results indicate subsurface units that range from three to five resistivity layers; depth to groundwater of 0–10 m; overburden thickness of 3–16 m; hydraulic conductivity of 6.2?×?10?6 to 3.4?×?10?4 m/s; transmissivity of 4.3?×?10?7 to 2?×?10?3 m2/s; and groundwater yield of 0.2–2.5 L/s. The hydraulic head assessments revealed a general northward groundwater flow direction. The study identified three aquifer potential types, of high, medium and low productivity, respectively. Based on the longitudinal conductance of the overburden units, four distinct Aquifer Protective Capacity zones were delineated, namely, poor, weak, moderate and good.

Citation Okogbue, C.O. and Omonona, O.V., 2013. Groundwater potential of Egbe-Mopa basement area, central Nigeria. Hydrological Sciences Journal, 58 (4), 826–840.  相似文献   

7.
Relationships between stream chemistry and elevation, area, Anakeesta geology, soil properties, and dominant vegetation were evaluated to identify the influence of basin characteristics on baseflow and stormflow chemistry in eight streams of the Great Smoky Mountains National Park. Statistical analyses were employed to determine differences between baseflow and stormflow chemistry, and relate basin‐scale factors governing local chemical processes to stream chemistry. Following precipitation events, stream pH was reduced and aluminium concentrations increased, while the response of acid neutralizing capacity (ANC), nitrate, sulfate, and base cations varied. Several basin characteristics were highly correlated with each other, demonstrating the interrelatedness of topographical, geological, soil, and vegetative parameters. These interrelated basin factors uniquely influenced acidification response in these streams. Streams in higher‐elevation basins (>975 m) had significantly lower pH, ANC, sodium, and silicon and higher nitrate concentrations (p < 0.05). Streams in smaller basins (<10 km2) had significantly lower nitrate, sodium, magnesium, silicon, and base cation concentrations. In stormflow, streams in basins with Anakeesta geology (>10%) had significantly lower pH and sodium concentrations, and higher aluminium concentrations. Chemical and physical soil characteristics and dominant overstory vegetation in basins were more strongly correlated with baseflow and stormflow chemical constituents than topographical and geological basin factors. Saturated hydraulic conductivity, of all the soil parameters, was most related to concentrations of stormflow constituents. Basins with higher average hydraulic conductivities were associated with lower stream pH, ANC, and base cation concentrations, and higher nitrate and sulfate concentrations. These results emphasize the importance of soil and geological properties influencing stream chemistry and promote the prioritization of management strategies for aquatic resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

9.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

10.
Abstract

A two gyre circulation and inertial western boundary currents have been observed in a sloping bottom laboratory model of a barotropic ocean circulation. Water of viscosity v is contained in a rotating (angular velocity ω), square basin of side L (30 cm) with a flat top and a bottom slope (tan θ) such that the depth (H) varies from 12 to 15 cm. The flow is driven by a distributed source and sink at the upper surface, a plate drilled with 342 holes. The hole distribution and size is arranged so that the average imposed vertical velocity, w = w 0 sin (2πy′/30), models the Ekman divergence from a two gyre zonal wind stress. Fluid flow is observed with the thymol blue technique over the ranges of Rossby numbers (w 0/2ωL tan θ) from 1.44 × 10?3 to 1.41 × 10?2 and Ekman numbers (v/2ωH 2) from 2.13 × 10?5 to 2.10 × 10?3. At the largest Rossby numbers the flow pattern changes markedly, but the non-uniformity of the imposed vertical velocity also penetrates deep into the fluid in this regime.  相似文献   

11.
Estimates of sediment yield are essential in water resources analysis, modelling and engineering, in investigations of continental denudation rates, and in studies of drainage basin response to changes in climate and land use. The availability of high resolution, global environmental datasets offers an opportunity to examine the relationships between specific sediment yield (SYsp) and drainage basin attributes in a geographical information system (GIS) environment. This study examines SYsp at 14 long‐term gauging stations within the upper Indus River basin. Twenty‐nine environmental variables were derived from global datasets, the majority with a 1 × 1 km resolution. The SYsp ranges from 194 to 1302 t km?2 yr?1 for sub‐basins ranging from 567 to 212 447 km2. The high degree of scatter in SYsp is greatly reduced when the stations are divided into three groups: upper, glacierized sub‐basins; lower, monsoon sub‐basins; and the main Indus River. Percentage snow/ice cover (LCs) emerges as the single major land cover control for SYsp in the high mountainous upper Indus River basin. A regression model with percentage snow/ice cover (LCs) as the single independent variable explains 73·4% of the variance in SYsp for the whole Indus basin. A combination of percentage snow/ice cover (LCs), relief and climate variables explains 98·5% of the variance for the upper, glacierized sub‐basins. For the lower monsoon region, a regression model with only mean annual precipitation (P) explains 99·4% of the variance. Along the main Indus River, a regression model including just basin relief (R) explains 92·4% of the variance in SYsp. Based on the R2adj and P‐value statistics, the variables used are capable of explaining the majority of variance in the upper Indus River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   

13.
Abstract

Abstract There is an urgent need for an integrated surface water and groundwater modelling tool that is suitable for southern African conditions and can be applied at various basin scales for broad strategic water resource planning purposes. The paper describes two new components (recharge and groundwater discharge) that have been added to an existing monthly time-step rainfall–runoff model that is widely used in the southern African subcontinent. The new components are relatively simple, consistent with the existing model formulation, but based on accepted groundwater flow principles and well understood groundwater parameters. The application of the revised model on two basins in southern Africa with quite different baseflow characteristics has demonstrated that the new components have a great deal of potential, even if the improvement is only to be able to simulate the groundwater baseflow component of total runoff more explicitly. More comprehensive testing and comparison of the results with existing groundwater and geohydrological data is required, while some extensions to the new components need to be considered to ensure that the model can be considered applicable to a wide range of basin and climate types.  相似文献   

14.
Abstract

The hydrological cycle in arid and semi-arid climates is highly controlled by evaporation. The correct quantification of this process is essential for improving the accuracy of water balance estimates, especially in closed basins. The objective of this paper is to characterize evaporation rates from shallow groundwater using the chamber approach in six closed basins in the Altiplano of northern Chile. Measurements were made at 49 locations with water-table depths ranging from 0.09 m to 3.3 m. Estimated daily evaporation rates appeared to be strongly related to groundwater depth and soil texture. In particular, the highest rates were recorded in areas with high groundwater tables and coarse-grained soils. Evaporation curves were derived by fitting exponential and power relationships as functions of the groundwater depths that we proposed to use in the study area. An application of these curves for the Salar de Pedernales basin produced an estimated evaporation flow of 530 L s-1, using the average curve.

Citation Johnson, E., Yáñez, J., Ortiz, C. & Muñoz, J. (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol. Sci. J. 55(4), 624–635.  相似文献   

15.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   

16.
Abstract

Abstract Base flows make up the flows of most rivers in Zimbabwe during the dry season. Prediction of base flows from basin characteristics is necessary for water resources planning of ungauged basins. Linear regression and artificial neural networks were used to predict the base flow index (BFI) from basin characteristics for 52 basins in Zimbabwe. Base flow index was positively related to mean annual precipitation (r = 0.71), basin slope (r = 0.76), and drainage density (r = 0.29), and negatively related to mean annual evapotranspiration (r = –0.74), and proportion of a basin with grasslands and wooded grasslands (r = –0.53). Differences in lithology did not significantly affect BFI. Linear regression and artificial neural networks were both suitable for predicting BFI values. The predicted BFI was used in turn to derive flow duration curves of the 52 basins and with R 2 being 0.89–0.99.  相似文献   

17.
Abstract

A comprehensive hydro-ecological investigation was conducted to determine the ecological response of increased groundwater withdrawals from the Kirkwood-Cohansey aquifer system, an important source of water supply in southern New Jersey, USA. Collocated observations were made of aquatic-macroinvertebrate assemblages and stream hydrologic attributes to develop flow–ecology response relations. A sub-regional transient groundwater flow model (MODFLOW) was used to simulate three plausible high-stress groundwater-withdrawal scenarios which resulted in stream baseflow reductions of approximately 0.12, 0.20, and 0.26 m3 s-1. These reduction scenarios were used to construct flow-alteration ecological response models to evaluate aquatic-macroinvertebrate response to streamflow reduction. For example, flow-alteration ecological response models indicate that if groundwater withdrawals diminish mean annual streamflow from 1.1 to 0.6 m3 s-1, the abundance of intolerant taxa could be reduced by as much as 20%. These flow-alteration ecological response modelling results could be used by resource professionals to evaluate alternative water management strategies to determine maximum basin withdrawal rates that meet ongoing human water demand while protecting biological integrity.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Kennen, J.G., Riskin, M.L., and Charles, E.G., 2014. Effects of streamflow reductions on aquatic macroinvertebrates: linking groundwater withdrawals and assemblage response in southern New Jersey streams, USA. Hydrological Sciences Journal, 59 (3–4), 545–561.  相似文献   

18.
ABSTRACT

This study assesses the sensitivity to model fitting methods and segment selection of the estimated parameters A and B of the model dQ/dt = ?AQB for individual events. We investigated about 750 recession events observed at 25 US Geological Survey gauges in the Iowa and Cedar river basins in the United States, with drainage areas ranging from 7 to 17 000 km2. The parameters of these recession events were estimated using three commonly adopted methods and recession segments with different extraction criteria. The results showed that the variations of the parameter estimates for the same recession event were comparable to the variations of parameters between different events due to using different model fitting methods and recession segments. This raises cautions for comparative analysis of individual recessions. The result also implies that the nonlinear direct fitting method is the most robust among the three model fitting methods compared.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Okruszko  相似文献   

19.
Abstract

The quantification of natural recharge rate is a prerequisite for efficient and sustainable groundwater resources management. Since groundwater is the only source of water supply in the West Bank, it is of utmost importance to estimate the rate of replenishment of the aquifers. The chloride mass-balance method was used to estimate recharge rates at different sites representing the three groundwater basins of the Mountain Aquifer in the West Bank. The recharge rate for the Eastern Basin was calculated as between 130.8 and 269.7 mm/year, with a total average replenishment volume of 290.3 × 106 m3/year. For the Northeastern Basin, the calculated recharge rate ranged between 95.2 and 269.7 mm/year, with a total average recharge volume of 138.5 × 106 m3/year. Finally, the recharge rate for the Western Basin was between 122.6 and 323.6 mm/year, with a total average recharge volume of 324.9 × 106 m3/year. The data reveal a replenishment potential within the estimated replenishment volumes of previous studies for the same area. Also, the range was between 15 and 50% of total rainfall, which is still within the range of previous studies. The geological structure and the climate conditions of the western slope were clearly play an important role in the increment of total volume. In some cases, such as the geological formations in the Northeastern Basin, the interaction between Eocene and Senonian chalk formations result in minimum recharge rates.

Citation Marei, A., Khayat, S., Weise, S., Ghannam, S., Sbaih, M. & Geyer, S. (2010) Estimating groundwater recharge using the chloride mass-balance method in the West Bank, Palestine. Hydrol. Sci. J. 55(5), 780–791.  相似文献   

20.
Abstract

The western reservoirs represent the principal groundwater system in Morocco. Demographic, industrial and agricultural developments during the last decade have markedly altered groundwater quality. The Mamora coastal aquifer system is among the Atlantic systems which are most heavily threatened by pollution. Agricultural and industrial activities, and rapid urban growth contribute to the pollution of the groundwater. Contamination transport is facilitated by a high permeability of the aquifer formations. In order to assess the actual groundwater quality of the Mamora aquifer and to understand the influence of the factors generating the pollution, an extensive multidisciplinary research programme is in progress, with hydrochemistry and microbiology playing essential roles. The present paper concerns the spatial distribution of physico-chemical parameters in the groundwater, subjected to domestic, industrial and agricultural pollution. Fifty-seven samples were analysed for several parameters (Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, HCO3 ?, NO3 ?, pH, electrical conductivity and temperature). The microbiological analysis of 143 samples reveals the presence of four kinds of indicator bacteria in the groundwater resources: faecal Streptococci, faecal coliform, Escherichia coli and Clostridium. The physico-chemical results and bacteriological monitoring show that the nitrate and bacteria concentrations exceed the maximum admissible levels, notably around pumping stations in the sectors of Sidi Taibi, Sidi Ahmed Taleb and Aïn Sbaâ. Contamination is generated by uncontrolled anthropogenic activities and accentuated by the high intrinsic vulnerability of the aquifer system. Several parameters appeared to exceed admissibility standards. Measures are recommended to prevent groundwater pollution in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号