首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

2.
ABSTRACT

The critical need for hydrological observations in support of water resources management, particularly during extreme events, has transformed traditional methods of hydrological data management. This transformation has given rise to a framework of e-monitoring the hydrological cycle, the aim of which is to improve understanding of the nature of water. New trends in data science, coupled with increasing technological evolution, make the new generation of data systems more agile and responsive to the needs and expectations for efficient and effective data sharing and service delivery. The WMO Hydrological Observing System was designed around the integration of observations, data exchange, research, data processing, modelling and forecasting, in such a way that societal needs for disaster risk reduction, improved sustainability of environmental resources, climate resilience and economic growth can be effectively met. With its implementation of conceptual functionalities for sustainable data management, the WHOS operational architecture is hydrology’s system for the future.  相似文献   

3.
Abstract

The global climate change may have serious impacts on the frequency, magnitude, location and duration of hydrological extremes. Changed hydrological extremes will have important implications on the design of future hydraulic structures, flood-plain development, and water resource management. This study assesses the potential impact of a changed climate on the timing and magnitude of hydrological extremes in a densely populated and urbanized river basin in southwestern Ontario, Canada. An ensemble of future climate scenarios is developed using a weather generating algorithm, linked with GCM outputs. These climate scenarios are then transformed into basin runoff by a semi-distributed hydrological model of the study area. The results show that future maximum river flows in the study area will be less extreme and more variable in terms of magnitude, and more irregular in terms of seasonal occurrence, than they are at present. Low flows may become less extreme and variable in terms of magnitude, and more irregular in terms of seasonal occurrence. According to the evaluated scenarios, climate change may have favourable impacts on the distribution of hydrological extremes in the study area.  相似文献   

4.
Abstract

Hydrologists responsible for flood management need real-time data in order to manage imminent or ongoing floods. In this paper, innovative methods for accessing hydrological data and their spatial visualization are introduced. A multitude of relevant real-time, forecast and historical information is provided in a single, self-updating hydrological map information system. The system consists of a central database and a cartographic user interface and provides harmonized and filtered data in the form of interactive, customizable maps. Maps may also be cross-referenced with historical maps or may be animated for improved comprehension and decision making. Emphasis is placed on the development of the hydrological real-time database that manages large amounts of spatial, temporal and attributive data. The paper focuses on the cartographic user interface, its functionality and the resulting interactive hydrological maps.

Citation Lienert, C., Weingartner, R. &; Hurni, L. (2011) An interactive, web-based, real-time hydrological map information system. Hydrol. Sci. J. 56(1), 1–16  相似文献   

5.
ABSTRACT

Calibration of hydrological models is challenging in high-latitude regions where hydrometric data are minimal. Process-based models are needed to predict future changes in water supply, yet often with high amounts of uncertainty, in part, from poor calibrations. We demonstrate the utility of stable isotopes (18O, 2H) as data employed for improving the amount and type of information available for model calibration using the isoWATFLOODTM model. We show that additional information added to calibration does not hurt model performance and can improve simulation of water volume. Isotope-enabled calibration improves long-term validation over traditional flow-only calibrated models and offers additional feedback on internal flowpaths and hydrological storages that can be useful for informing internal water distribution and model parameterization. The inclusion of isotope data in model calibration reduces the number of realistic parameter combinations, resulting in more constrained model parameter ranges and improved long-term simulation of large-scale water balance.  相似文献   

6.
ABSTRACT

The impact of climate change on runoff characteristics is investigated for the Upper Tisza basin, in eastern Central Europe. For a reliable estimation of uncertainty, an appropriate stochastic weather generator is embedded into a Monte Carlo cycle capable of generating any large number of independent, equally probable, 100-year-long daily sequences of synthetic data with which a hydrological model is driven in order to obtain the hydrological responses to the meteorological data sequences. According to our results, a decrease of daily average runoff is likely to occur in the future in the Upper Tisza basin, especially in July and August. The occurrence of water levels below the critical low level is estimated to increase between July and October. Level-3 flood warnings are projected to be less frequent in the future; however, they will tend to be more severe than in the historical period.  相似文献   

7.
Abstract

Validation of large amounts of digital hydrological data and eventual exchange of data between various organisations can benefit from the development of a structured hydrological feature coding system. In this article we describe the development of such a system and present its implementation in the CCM2 structured hydrological feature data set, covering Europe to the Urals and including Turkey. We discuss the coding of river basins, catchments, lakes and rivers. The proposed coding system is largely inspired by the work of Otto Pfafstetter with additions for coding oceans, seas, islands and lakes. Furthermore the coding system can be transferred to features that geometrically intersect the coded hydrological features and we propose some rules on how to establish this transfer.

Citation de Jager, A. L. & Vogt, J. V. (2010) Development and demonstration of a structured hydrological feature coding system for Europe. Hydrol. Sci. J. 55(5), 661–675.  相似文献   

8.
《水文科学杂志》2013,58(5):909-917
Abstract

The possibility of simulating flooding in the Huong River basin, Vietnam, was examined using quantitative precipitation forecasts at regional and global scales. Raingauge and satellite products were used for observed rainfall. To make maximum use of the spatial heterogeneity of the different types of rainfall data, a distributed hydrological model was set up to represent the hydrological processes. In this way, streamflow simulated using the rainfall data was compared with that observed in situ. The forecast on a global scale showed better performance during normal flow peak simulations than during extreme events. In contrast, it was found that during an extreme flood peak, the use of regional forecasts and satellite data gives results that are in close agreement with results using raingauge data. Using the simulated overflow volumes recorded at the control point downstream, inundation areas were then estimated using topographic characteristics. This study is the first step in developing a future efficient early warning system and evacuation strategy.  相似文献   

9.
ABSTRACT

This paper presents a discussion of some of the issues associated with the multiple sources of uncertainty and non-stationarity in the analysis and modelling of hydrological systems. Different forms of aleatory, epistemic, semantic, and ontological uncertainty are defined. The potential for epistemic uncertainties to induce disinformation in calibration data and arbitrary non-stationarities in model error characteristics, and surprises in predicting the future, are discussed in the context of other forms of non-stationarity. It is suggested that a condition tree is used to be explicit about the assumptions that underlie any assessment of uncertainty. This also provides an audit trail for providing evidence to decision makers.
Editor D. Koutsoyiannis; Associate editor S. Weijs  相似文献   

10.
《水文科学杂志》2013,58(5):829-840
Abstract

The paper presents a compact picture of the occurrence of water on Earth, including the temporal development of water resources of the planet, the current water balance, and the future of water on Earth. In examining numerous standard hydrological references and new developments in quantification of the water resources of planet Earth, several corrections are proposed to the hydrological water balance of Earth. Particular attention is drawn to the areas of open water surfaces on land, which according to current estimates are much larger than reported in standard hydrological references. The paper stresses the need for improvements in our understanding of the hydrological cycle and presents several conclusions on the ways to improve this understanding and future visualizations of the water balance of Earth.  相似文献   

11.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

12.
The Natural Resource Conservation Service – Curve Number (NRCS-CN) methodology is a widely used tool for estimating surface runoff, which is of prime importance in hydrological engineering, agricultural planning and management, environmental impact assessment, flood forecasting, and others fields. This article reviews the methodology and associated hydrological models used for runoff estimation along with their advantages and limitations. Furthermore, discussion focuses on the potential applications of Remote Sensing (RS) and Geographical Information System (GIS) techniques for estimating hydrological variables, such as rainfall, soil moisture and CN required for the NRCS-CN methodology, as well as future research and opportunities for improved runoff estimation at the macro scale.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

13.
ABSTRACT

A geochemical approach using stable oxygen isotopes was used to understand streamflow generation processes in the highly peaty catchment of the Rokytka Brook in the headwaters of the Vltava River, Czech Republic. The contribution of water from peat bog areas to the total surface runoff was assessed using a hydrological time series, as well as geochemical, hydrochemical and isotope-hydrological approaches for unit hydrogram separation by means of anion deficiency. Using data from the hydrological year 2008, the role of an existing peat bog in the runoff formation dynamics of the Rokytka Brook catchment was determined, and the hydrological cycle was described and assessed using stable 18O/16O isotopes. The research findings strongly support the fact that peatland areas within the studied catchment do not significantly communicate hydraulically with surface streams, and their hydrological function in this region is insignificant.
Editor M. C. Acreman; Associate editor not assigned  相似文献   

14.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

15.
Abstract

Development of environmental flow standards at the regional scale has been proposed as a means to manage the influence of hydrological alterations on riverine ecosystems in view of the rapid pace of global water resources management. Flow regime classification forms a critical part in such environmental flow assessments. We present a national-scale classification of hydrological regimes for Iran based on a set of hydrological metrics. It describes ecologically relevant characteristics of the natural hydrological regime derived from 15- to 47-year-long records of daily mean discharge data for 539 streamgauges within a 47-year period. The classification was undertaken using a fuzzy partitional method within Bayesian mixture modelling. The analysis resulted in 12 classes of distinctive flow regime types that differ in various hydrological aspects. This classification is being used for further research in regional-scale environmental flow studies in Iran.
Editor D. Koutsoyiannis  相似文献   

16.
ABSTRACT

Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning.  相似文献   

17.
Abstract

The importance of flow regime variability for maintaining ecological functioning and integrity of river ecosystems has been firmly established in both natural and anthropogenically modified systems. River flow regimes across lowland catchments in eastern England are examined using 47 variables, including those derived using the Indicators of Hydrologic Alteration (IHA) software. A principal component analysis method was used to identify redundant hydrological variables and those that best characterized the hydrological series (1986–2005). A small number of variables (<6) characterized up to 95% of the statistical variability in the flow series. The hydrological processes and conditions that the variables represent were found to be significant in structuring the in-stream macroinvertebrate community Lotic-invertebrate Index for Flow Evaluation (LIFE) scores at both the family and species levels. However, hydrological variables only account for a relatively small proportion of the total ecological variability (typically <10%). The research indicates that a range of other factors, including channel morphology and anthropogenic modification of in-stream habitats, structure riverine macroinvertebrate communities in addition to hydrology. These factors need to be considered in future environmental flow studies to enable the characterization of baseline/reference conditions for management and restoration purposes.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Worrall, T.P., Dunbar, M.J., Extence, C.A., Laizé, C.L.R., Monk, W.A., and Wood, P.J., 2014. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59 (3–4), 645–658.  相似文献   

18.
Abstract

There is a lack of consistency and generality in assessing the performance of hydrological data-driven forecasting models, and this paper presents a new measure for evaluating that performance. Despite the fact that the objectives of hydrological data-driven forecasting models differ from those of the conventional hydrological simulation models, criteria designed to evaluate the latter models have been used until now to assess the performance of the former. Thus, the objectives of this paper are, firstly, to examine the limitations in applying conventional methods for evaluating the data-driven forecasting model performance, and, secondly, to present new performance evaluation methods that can be used to evaluate hydrological data-driven forecasting models with consistency and objectivity. The relative correlation coefficient (RCC) is used to estimate the forecasting efficiency relative to the naïve model (unchanged situation) in data-driven forecasting. A case study with 12 artificial data sets was performed to assess the evaluation measures of Persistence Index (PI), Nash-Sutcliffe coefficient of efficiency (NSC) and RCC. In particular, for six of the data sets with strong persistence and autocorrelation coefficients of 0.966–0.713 at correlation coefficients of 0.977–0.989, the PIs varied markedly from 0.368 to 0.930 and the NSCs were almost constant in the range 0.943–0.972, irrespective of the autocorrelation coefficients and correlation coefficients. However, the RCCs represented an increase of forecasting efficiency from 2.1% to 37.8% according to the persistence. The study results show that RCC is more useful than conventional evaluation methods as the latter do not provide a metric rating of model improvement relative to naïve models in data-driven forecasting.

Editor D. Koutsoyiannis, Associate editor D. Yang

Citation Hwang, S.H., Ham, D.H., and Kim, J.H., 2012. A new measure for assessing the efficiency of hydrological data-driven forecasting models. Hydrological Sciences Journal, 57 (7), 1257–1274.  相似文献   

19.
Abstract

Access to hydrometric information underpins many areas of effective water management. This paper explores the operational practices of one national hydrological information service, the UK National River Flow Archive, in collating, managing and providing access to river flow data. An information lifecycle approach to hydrometric data management is advocated, with the paper detailing current UK procedures in the areas of: monitoring network design and development; data sensing and recording; validation and archival; synthesis and analysis; and data dissemination. The methods and policies outlined herein are widely transferable to other hydrological data archives around the world.

Editor D. Koutsoyiannis

Citation Dixon, H., Hannaford, J., and Fry, M.J., 2013. The effective management of national hydrometric data: experiences from the United Kingdom. Hydrological Sciences Journal, 58 (7), 1383–1399.  相似文献   

20.
Abstract

A decadal-scale study to retrieve the spatio-temporal precipitation patterns of the Yangtze River basin, China, using the Tropical Rain Mapping Mission, Precipitation Radar (TRMM/PR) data is presented. The empirical orthogonal function (EOF) based on monthly TRMM/PR data extracts several leading precipitation patterns, which are largely connected with physical implications at the basin scale. With the aid of gauge station data, the amplitudes of major principal components (PCs) were used to examine the generic relationships between precipitation variations and hydrological extremes (e.g. floods and droughts) during summer seasons over the past decade. The emergence of such major precipitation patterns clearly reveals the possible linkages with hydrological processes, and the oscillations in relation to the amplitude of major PCs are consistent with these observed hydrological extremes. Although the floods in some sections of the Yangtze River were, to some extent, tied to human activities, such as the removal of wetlands, the variations in major precipitation patterns are recognized as the primary driving force of the flow extremes associated with floods and droughts. The research findings indicate that long-distance hydro-meteorological signals of large-scale precipitation variations over such a large river basin can be successfully identified with the aid of EOF analysis. The retrieved precipitation patterns and their low-frequency jumps of amplitude in relation to PCs are valuable tools to help understand the association between the precipitation variations and the occurrence of hydrological extremes. Such a study can certainly aid in disaster mitigation and decision-making in water resource management.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Sun, Z., Chang, N.-B., Huang, Q., and Opp, C., 2013. Precipitation patterns and associated hydrological extremes in the Yangtze River basin, China, using TRMM/PR data and EOF analysis. Hydrological Sciences Journal, 57 (7), 1315–1324.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号