首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

2.
In this article, an approach using residual kriging (RK) in physiographical space is proposed for regional flood frequency analysis. The physiographical space is constructed using physiographical/climatic characteristics of gauging basins by means of canonical correlation analysis (CCA). This approach is a modified version of the original method, based on ordinary kriging (OK). It is intended to handle effectively any possible spatial trends within the hydrological variables over the physiographical space. In this approach, the trend is first quantified and removed from the hydrological variable by a quadratic spatial regression. OK is therefore applied to the regression residual values. The final estimated value of a specific quantile at an ungauged station is the sum of the spatial regression estimate and the kriged residual. To evaluate the performance of the proposed method, a cross‐validation procedure is applied. Results of the proposed method indicate that RK in CCA physiographical space leads to more efficient estimates of regional flood quantiles when compared to the original approach and to a straightforward regression‐based estimator. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Regionalization of low flows based on Canonical Correlation Analysis   总被引:2,自引:0,他引:2  
Regional analysis of low-flow statistics is a critical step in solving water resources management problems related to the requirements of the Water Framework Directive. Important element in this analysis is the determination of homogeneous sub-regions based on physiographic characteristics of the corresponding basin. The purpose of this paper is to investigate the use of the canonical correlation method for partitioning the set of drainage basins of a region into a number of homogeneous sub-regions and determining the relations between the physiographic and low-flow statistics of the basins of each sub-region. The method is also proposed to be used for classifying an ungauged basin in a sub-region of gauged basins.  相似文献   

4.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   

5.
《水文科学杂志》2013,58(1):86-87
  相似文献   

6.
Reliable estimation of low flows at ungauged catchments is one of the major challenges in water‐resources planning and management. This study aims at providing at‐site and ungauged sites low‐flow frequency analysis using regionalization approach. A two‐stage delineating homogeneous region is proposed in this study. Clustering sites with similar low‐flow L‐moment ratios is initially conducted, and L‐moment‐based discordancy and heterogeneity measures are then used to detect unusual sites. Based on the goodness‐of‐fit test statistic, the best‐fit regional model is identified in each hydrologically homogeneous region. The relationship between mean annual 7‐day minimum flow and hydro‐geomorphic characteristics is also constructed in each homogeneous region associated with the derived regional model for estimating various low‐flow quantiles at ungauged sites. Uncertainty analysis of model parameters and low‐flow estimations is carried out using the Bayesian inference. Applied in Sefidroud basin located in northwestern Iran, two hydrologically homogeneous regions are identified, i.e. the east and west regions. The best‐fit regional model for the east and west regions are generalized logistic and Pearson type III distributions, respectively. The results show that the proposed approach provides reasonably good accuracy for at‐site as well as ungauged‐site frequency analysis. Besides, interval estimations for model parameters and low flows provide uncertainty information, and the results indicate that Bayesian confidence intervals are significantly reduced when comparing with the outcomes of conventional t‐distribution method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Based on a Chinese saying: “Even a clever housewife cannot cook a meal without rice”, a simple categorization of the methods for Predictions in Ungauged Basins (PUB) is proposed, including: Borrowing, obtaining hydrological information by transplanting measurements from a similar basin, or extrapolating/interpolating the data from neighbouring catchments; Substituting, finding substitutes either from the ungauged basin or from donating area(s); and Generating, obtaining data via field or laboratory observations. The Substituting category is classified further into: S1, substitution only from within the ungauged basin using fully process-based models without calibration; S2-1, from similar gauged basins using established index/distribution; S2-2, from various gauged basins using regression and/or process-based relationships between the climate/catchment features and hydrological signatures (CCH), and S3, from the information beyond the CCH relationship. Based on a review, the Darwinian S2-2 and Newtonian S1 were found to be the two most popular methods, both for China and worldwide PUB.
Editor Z.W. Kundzewicz  相似文献   

8.
9.
Abstract

This review paper critically examines one of the most popular flood hydrograph modelling techniques for ungauged basins, the synthetic unit hydrograph (SUH), and its recent developments and advances. For this purpose, the SUH models were first grouped into four main classes, as follows: (a) traditional or empirical models; (b) conceptual models; (c) probabilistic models; and (d) geomorphological models. It was found that the geomorphological class is the most useful and interesting, since it is able to employ topographic information, so limiting the role of the calibration parameters. This review is expected to be helpful to hydrologists, water managers and decision-makers searching for models to study the flood hydrograph, modelling techniques and related processes in ungauged basins. It was completed as the International Association of Hydrological Sciences (IAHS) Decade (2003–2012) on predictions in ungauged basins (PUB), drew to a close.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Singh, P.K., Mishra, S.K., and Jain, M.K., 2013. A review of the Synthetic Unit Hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59 (2), 239–261.  相似文献   

10.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

11.
ABSTRACT

Lack of discharge data for model calibration is challenging for flood prediction in ungauged basins. Since establishment and maintenance of a permanent discharge station is resource demanding, a possible remedy could be to measure discharge only for a few events. We tested the hypothesis that a few flood-event hydrographs in a tropical basin would be sufficient to calibrate a bucket-type rainfall–runoff model, namely the HBV model, and proposed a new event-based calibration method to adequately predict floods. Parameter sets were chosen based on calibration of different scenarios of data availability, and their ability to predict floods was assessed. Compared to not having any discharge data, flood predictions improved already when one event was used for calibration. The results further suggest that two to four events for calibration may considerably improve flood predictions with regard to accuracy and uncertainty reduction, whereas adding more events beyond this resulted in small performance gains.  相似文献   

12.
Abstract

Abstract Base flows make up the flows of most rivers in Zimbabwe during the dry season. Prediction of base flows from basin characteristics is necessary for water resources planning of ungauged basins. Linear regression and artificial neural networks were used to predict the base flow index (BFI) from basin characteristics for 52 basins in Zimbabwe. Base flow index was positively related to mean annual precipitation (r = 0.71), basin slope (r = 0.76), and drainage density (r = 0.29), and negatively related to mean annual evapotranspiration (r = –0.74), and proportion of a basin with grasslands and wooded grasslands (r = –0.53). Differences in lithology did not significantly affect BFI. Linear regression and artificial neural networks were both suitable for predicting BFI values. The predicted BFI was used in turn to derive flow duration curves of the 52 basins and with R 2 being 0.89–0.99.  相似文献   

13.
Abstract

One of the main challenges faced by hydrologists and water engineers is the estimation of variables needed for water resources planning and management in ungauged river basins. To this end, techniques for transposing information, such as hydrological regional analyses, are widely employed. A method is presented for regionalizing flow-duration curves (FDCs) in perennial, intermittent and ephemeral rivers, based on the extended Burr XII probability distribution. This distribution shows great flexibility to fit data, with accurate reproduction of flow extremes. The performance analysis showed that, in general, the regional models are able to synthesize FDCs in ungauged basins, with a few possible drawbacks in the application of the method to intermittent and ephemeral rivers. In addition to the regional models, we summarize the experience of using synthetic FDCs for the indirect calibration of the Rio Grande rainfall–runoff model parameters in ungauged basins.

Editor D. Koutsoyiannis

Citation Costa, V., Fernandes, W., and Naghettini, M., 2013. Regional models of flow-duration curves of perennial and intermittent streams and their use for calibrating the parameters of a rainfall–runoff model. Hydrological Sciences Journal, 59 (2), 262–277.  相似文献   

14.
Abstract

The concept of “catchment-scale storm velocity” quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space–time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2 to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling.

Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Nikolopoulos, E.I., Borga, M., Zoccatelli, D., and Anagnostou, E.N., 2014. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59 (7), 1363–1376. http://dx.doi.org/10.1080/02626667.2014.923889  相似文献   

15.
Abstract

In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the “ungauged” runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated.  相似文献   

16.
Abstract

The increasing demand for water in southern Africa necessitates adequate quantification of current freshwater resources. Watershed models are the standard tool used to generate continuous estimates of streamflow and other hydrological variables. However, the accuracy of the results is often not quantified, and model assessment is hindered by a scarcity of historical observations. Quantifying the uncertainty in hydrological estimates would increase the value and credibility of predictions. A model-independent framework aimed at achieving consistency in incorporating and analysing uncertainty within water resources estimation tools in gauged and ungauged basins is presented. Uncertainty estimation in ungauged basins is achieved via two strategies: a local approach for a priori model parameter estimation from physical catchment characteristics, and a regional approach to regionalize signatures of catchment behaviour that can be used to constrain model outputs. We compare these two sources of information in the data-scarce region of South Africa. The results show that both approaches are capable of uncertainty reduction, but that their relative values vary.

Editor D. Koutsoyiannis

Citation Kapangaziwiri, E., Hughes, D.A., and Wagener, T., 2012. Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa. Hydrological Sciences Journal, 57 (5), 1000–1019.  相似文献   

17.
Abstract

The two-parameter EV1 distribution adequately describes New Zealand's flood series. Contour maps of [Qbar]/A0.8 and Q100[Qbar] are presented, where [Qbar] is the mean annual flood, A is the basin area and Q100 is the 1% annual exceedance probability flood. The maps are based directly on measured discharge series from a large sample of river recording stations. Thus when basins are ungauged, or have just a short record, an estimate of a design flood QT with specified annual exceedance probability (1/T) can be obtained using map estimates of [Qbar]/A0.8 and Q100[Qbar], without having first to estimate rainfall statistics for the basin, a particularly difficult task in sparsely instrumented mountainous areas. These maps succinctly summarize a great deal of hydrological information and permit improved flood frequency estimates.  相似文献   

18.
Abstract

As watershed models become increasingly sophisticated and useful, there is a need to extend their applicability to locations where they cannot be calibrated or validated. A new methodology for the regionalization of a watershed model is introduced and evaluated. The approach involves calibration of a watershed model to many sites in a region, concurrently. Previous research that has sought to relate the parameters of monthly water balance models to physical drainage basin characteristics in a region has met with limited success. Previous studies have taken the two-step approach: (a) estimation of watershed model parameters at each site, followed by (b) attempts to relate model parameters to drainage basin characteristics. Instead of treating these two steps as independent, both steps are implemented concurrently. All watershed models in a region are calibrated simultaneously, with the dual objective of reproducing the behaviour of observed monthly streamflows and, additionally, to obtain good relationships between watershed model parameters and basin characteristics. The approach is evaluated using 33 basins in the southeastern region of the United States by comparing simulations using the regional models for three catchments which were not used to develop the regional regression equations. Although the regional calibration approach led to nearly perfect regional relationships between watershed model parameters and basin characteristics, these “improved” regional relationships did not result in improvements in the ability to model streamflow at ungauged sites. This experiment reveals that improvements in regional relationships between watershed model parameters and basin characteristics will not necessarily lead to improvements in the ability to calibrate a watershed model at an ungauged site.  相似文献   

19.
Abstract

Recent developments in hydrological modelling of river basins are focused on prediction in ungauged basins, which implies the need to improve relationships between model parameters and easily-obtainable information, such as satellite images, and to test the transferability of model parameters. A large-scale distributed hydrological model is described, which has been used in several large river basins in Brazil. The model parameters are related to classes of physical characteristics, such as soil type, land use, geology and vegetation. The model uses two basin space units: square grids for flow direction along the basin and GRU—group response units—which are hydrological classes of the basin physical characteristics for water balance. Expected ranges of parameter values are associated with each of these classes during the model calibration. Results are presented of the model fitting in the Taquari-Antas River basin in Brazil (26 000 km2 and 11 flow gauges). Based on this fitting, the model was then applied to the Upper Uruguay River basin (52 000 km2), having similar physical conditions, without any further calibration, in order to test the transferability of the model. The results in the Uruguay basin were compared with recorded flow data and showed relatively small errors, although a tendency to underestimate mean flows was found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号