首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
李建军  蔡瑶瑶  张军龙 《地震》2019,39(1):20-28
塔藏断裂位于东昆仑断裂带东段, 长约170 km, 与岷山断裂带共同构成巴颜喀拉块体的东北构造边界, 中部与岷江断裂、 荷叶断裂、 虎牙断裂的北延段交会, 构成岷山隆起的地貌边界。 通过卫星影像解译结合构造地貌调查, 确定了断层属于全新世活动断层, 并利用断层走向弯曲和活动性、 阶区等标志将塔藏断裂分为三段。 西段为罗叉段, 总体走向NWW, 西侧与玛曲断裂形成左行左阶拉分区, 东侧在下黄寨村走向顺时针偏转至东北村段。 中段为东北村段, 总体走向NW, 东侧在九寨沟口附近走向逆时针偏转至马家磨段。 东段为马家磨段, 总体走向NWW, 西侧隔荷叶断裂、 虎牙断裂的北延段与中段相接。 东北村段以岷江断裂斜交点为界可分为南北两个次级段, 马家磨段以阶区为界划分为扎如次段、 唐寨次段、 勿角次段。 罗叉段和马家磨段的地震离逝时间较近, 东北村段相对较远。 断裂带整体呈反“S”形, 自西向东滑动速率总体呈减小趋势, 大部分水平变形转化为垂向的岷山隆升。 结合不同段上的滑动速率, 发现东昆仑断裂东段滑动速率呈梯度下降特征与东昆仑断裂带东段断层弯曲的几何特征相对应。  相似文献   

2.
文中从几何结构特征、断裂长期滑动速率和古地震复发特征3个方面对阿万仓断裂进行了研究。详细的遥感解译和野外调查结果表明:1)阿万仓断裂作为东昆仑断裂带东段(玛沁—玛曲段)的分支断裂,和东昆仑断裂一样也是1条全新世活动断裂,性质为左旋走滑兼逆断,总长约200km。西北段由2条总体走向310°,相距约16km近平行的次级断层组成,向SE方向合为1条断裂。2)在阿万仓断裂上发现大约15km长的古地震地表破裂带,表现为断层陡坎、断塞塘、地裂缝、断层沟槽等典型断错微地貌现象。3)经航、卫片解译,野外现场调查,断错地貌测量和样品测试,得到该断裂晚第四纪以来的平均左旋水平滑动速率为3mm/a,垂直滑动速率约0.07mm/a。4)通过对断错最新地貌面的测年和探槽剖面分析,认为阿万仓断裂带存在4次古地震事件,属原地复发型,最新1次事件是在(850±30)a BP以后发生的。5)阿万仓断裂左旋滑动速率与东昆仑断裂带玛沁—玛曲段递减的滑动速率量值相当,它的存在和发现可以很好地解释东昆仑断裂带东段(玛沁—玛曲段)滑动速率递减的特征。东昆仑活动断裂带中东段滑动速率逐渐递减,与东昆仑活动断裂带中东段帚状散开的几何结构有关,其中的阿万仓断裂是东昆仑断裂带东延过程中的重要分支断裂,吸收了东昆仑断裂带东延的应变分配。  相似文献   

3.
基于卫星影像解译和野外考察测量,本文对东昆仑断裂带中东部的3条次级断裂(托索湖断裂、玛沁断裂和玛曲断裂)的滑动速率以及全新世以来的古地震活动特征进行了分析研究。托索湖段与玛沁段走向产生20°和30°的双挤压弯曲,形成阿尼玛卿山挤压隆起,作为托索湖段和玛沁段的破裂分段标志,成为1937年托索湖7.5级地震地表破裂带的终止点;在西贡周西侧和莫哈塘南侧,阿万仓断裂以40°的夹角与东昆仑断裂带相交,形成西贡周断裂交汇区,成为玛沁段与玛曲段破裂分段的标志。通过构造地貌方法获得西段托索湖断裂晚第四纪晚期以来的平均水平速率为10.8±1mm/a,垂直滑动速率为1.2±0.2mm/a;中段玛沁断裂带晚第四纪晚期以来的平均水平滑动速率为9.3±2mm/a,垂直滑动速率为0.7±0.1mm/a;西贡周断层交汇区平均水平滑动速率为7.4±1mm/a,垂直滑动速率为1.2±0.1mm/a;东段玛曲断裂晚第四纪晚期以来的平均水平滑动速率为4.9±1.3mm/a,垂直滑动速率为0.3mm/a。断裂的滑动速率从西至东呈梯度下降,通过构造转换矢量分解获得阿万仓断裂西支的左旋水平走滑速率为2.4mm/a,东支的左旋水平走滑速率为1.4mm/a,垂直断裂的水平缩短速率为2.3mm/a,阿万仓断裂带西支和东支构成一个滑动分解模式。3条次级断裂的活动均产生独立地表破裂,西侧的托索湖断裂发生了1937年MS7.5级地震,中段玛沁断裂发生了公元1061年格萨尔王时期和距今358~430CalaBP的地表破裂,玛曲段地表破裂距今约1055~1524aBP,显示出段落之间应力触发有关的地震破裂事件沿断裂带单向迁移的特征。同时利用断裂单次地震位移和古地震复发周期获得断裂的长期滑动速率,结果显示与构造地貌方法获得的滑动速率几乎一致,也显示自西向东逐渐递减的趋势。断裂滑动速率的递减与几何结构走向的弯曲以及横向断裂的相交一一对应,东昆仑断裂带的滑动速率梯度递减的主要原因是东昆仑断裂带东延和横向断裂相交,构造转换造成的。  相似文献   

4.
近EW向展布的东昆仑断裂带是巴颜喀拉地块北边界,其东延的活动性质和东端点位置对于探讨青藏高原东缘形成的动力学机制具有重要推动意义,也是鉴定断裂带地震危险性的基础.基于对东昆仑断裂带东部地貌卫星影像解译、地表破裂调查、阶地坎变形量测量和阶地测年数据,得到分析如下:(1)罗叉段属于全新世活动断层,存在长约50 km的反"L"形古地震地表破裂展布区;(2)晚更新世晚期以来在压剪作用下,罗叉段以左行滑动为主,速率为7.68~9.37 mm a-1,垂直滑动速率为0.7~0.9 mm a-1,与西侧各段的活动速率基本一致,表明属于东昆仑断裂带东延部分;(3)高速线性水平滑动的近EW向东昆仑断裂带,向东滑动受华南地块阻挡,转为近SN-NNE向岷江断裂带、龙门山断裂带的垂直活动及其间的龙门山和岷山的隆起,两种构造体系转换的区域限制了东端点位置;(4)罗叉段和玛曲段组成"玛曲空区",玛曲段的地震危险性较罗叉段更高,应引起注意.  相似文献   

5.
东昆仑断裂带东段玛曲断裂古地震初步研究   总被引:10,自引:0,他引:10  
东昆仑活动断裂是青藏高原东北部一条重要的NWW向边界断裂。玛曲断裂位于东昆仑断裂带的最东段。本文通过3个古地震剖面揭示出东昆仑断裂东段玛曲断裂全新世共有4次古地震事件。最新一次古地震事件为距今(1730±50)~(1802±52)a,第二次古地震的时间为距今(3736±57)~(4641±60)a;第三次为距今(8590±70)a;第四次为距今(12200±1700)a。其中第一次和第二次古地震事件的时间较为可靠,两次古地震事件之间的复发间隔为2400a左右,由此认为东昆仑断裂带东段的古震事件之间的复发间隔为2400a左右,古地震的离逝时间为距今(1730±50)~(1802±52)a。  相似文献   

6.
东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用   总被引:5,自引:0,他引:5  
基于卫星影像解译和野外考察测量,对东昆仑断裂带中东部托索湖段、玛沁段和玛曲段的晚更新世晚期以来滑动速率以及全新世以来的古地震活动特征进行了分析研究.阿尼玛卿山双挤压弯曲和西贡周断裂交汇区为这3条段落的破裂分段标志,也成为1937年托索湖7.5级地震地表破裂带的终止点.通过构造地貌方法获得这3条段落自西向东晚第四纪晚期以来的平均水平滑动速率分别为(11.2±1),(9.3±2)和(4.9±1.3)mm/a;垂直滑动速率分别为(1.2±0.2),(0.7±0.1)和0.3mm/a.断裂水平滑动速率从西至东呈梯度下降,递减的滑动速率主要转换到了与东昆仑断裂相交的阿万仓断裂上.通过构造转换矢量分解获得阿万仓断裂带西支和东支构成一个滑动分解模式,断裂西南盘相对北东盘的滑动速率为4.6mm/a,滑动方向为112.1°.3条段落的活动均产生独立地表破裂,西侧托索湖段1937年发生了M7.5级地震,往东玛沁段发生了514~534calaBP和距今(1070±180)a(格萨尔王时期)的地表破裂,玛曲段地表破裂发生在1055~1524aBP,显示出段落之间与应力触发有关的地震破裂事件沿断裂带单向迁移的特征.同时利用断裂单次地震位移和古地震复发周期获得断裂的长期滑动速率,结果显示与构造地貌方法获得的滑动速率几乎一致,也显示自西向东逐渐递减的趋势.断裂滑动速率的递减与几何结构走向的弯曲以及横向断裂的相交一一对应,因此东昆仑断裂带的滑动速率梯度递减的主要原因是东昆仑断裂带东延与横向断裂相交和构造转换所致.  相似文献   

7.
东昆仑活动断裂是青藏高原东北部一条重要的NWW向边界断裂。玛曲断裂位于东昆仑断裂带的最东段。根据野外考察结果认为玛曲断裂全新世以来活动强烈,主要表现为左旋走滑运动,并伴有正倾滑运动性质。断错地貌特征明显,断裂过玛曲县城以后,沿黑河南岸穿过若尔盖草地向东,直至岷山北端求吉附近。通过两处断错地貌的全站仪器实测和测年资料讨论了玛曲断裂新活动特征和全新世滑动速率,玛曲断裂全新世早期以来的平均水平滑动速率为6.29~5.71 mm/a,全新世晚期以来的平均水平滑动速率为4.19~4.03 mm/a。  相似文献   

8.
东昆仑活动断裂带东段全新世滑动速率研究   总被引:5,自引:2,他引:5       下载免费PDF全文
文中通过对东昆仑活动断裂带托索湖至玛曲段的实际野外测量,获得了该段上的1组断裂位错实测数据和14C及TL测年样品。通过室内分析研究,发现大体以阿尼玛卿山玛积主峰为界,东昆仑活动断裂带托索湖至玛曲段可再分为花石峡段和玛沁段2个在几何上不连续的段落,花石峡段的全新世水平滑动速率(115±11)mm/a明显高于玛沁段(70±06)mm/a。此外,由于断裂而引起的断裂两侧的差异垂直隆升速率,花石峡段自4kaBP以来约为(21±03)mm/a,玛沁段自10kaBP以来约为055mm/a。这种差异垂直隆升速率的明显变化,一方面反映了东昆仑活动断裂带不同段落上活动的差异,另一方面也可能反映了研究区内全新世以来的快速隆升  相似文献   

9.
《地震》2017,(3)
近NW向展布的塔藏断裂带位于巴颜喀拉块体东北缘,研究其东部活动性质对于探讨青藏高原东缘形成的动力学机制具有重要意义,也是判断断裂带地震危险性的基础。基于对塔藏断裂东部马家磨段卫星影像解译、地质地貌特征及地表破裂调查,对于其活动性得到以下认识:断裂空间几何展布总体呈NWW走向,倾向NE,起于漳扎镇西,止于沙尕里东南部,全长近60km。自西向东可以分为扎如沟段、唐寨段、勿角段3个次级段落,均为左旋右阶排列,阶区规模较小,最大阶区长约2km。广泛分布的构造地貌和古地震造成的破裂标志表明该段全新世仍有活动,断裂的最新活动时间为480±40aB.P.。该活动断裂为巴颜喀拉块体向东滑移提供了边界条件。  相似文献   

10.
下热尔断裂位于巴颜喀拉块体东北边界变形带即东昆仑断裂带东段与迭部-白龙江断裂2条剪切断裂之间挤压变形带内,在空间上属于“玛曲空段”范围.经野外考察及遥感资料验证,确定下热尔断裂走向为310°,长度约为20km,运动学特征表现为左旋走滑为主兼少量倾滑分量,沿断裂发育大量断错地貌,水平位移主要分布在3.5~5m,而未发现垂向断错地貌;垂直断裂走向开挖2处探槽,揭示断层切穿晚第四纪地层,被地表沼泽相泥炭层覆盖,结合相关地层年龄资料,初步得出平均水平滑动速率约为6.3mm/a.该断裂在几何学与运动学方面与东昆仑断裂带具有较好的一致性,推测两者之间存在一定相关性,属于东昆仑断裂带走滑断裂体系内的一条次级断裂或过渡性断裂.  相似文献   

11.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

12.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

13.
文中以东昆仑断裂带周围分布的27个GPS站点的地壳运动速率矢量为约束,利用半无限弹性空间三维断裂位错模型,反演了东昆仑断裂、柴达木盆地北缘断裂、玛尼-玉树断裂和玛尔盖茶卡断裂带在2001年昆仑山口西MS8.1地震之前的运动速率,并认为这些断裂带以反演出的运动速率错动所形成的形变场可以作为震前的背景地壳形变场。基于这一具有构造意义的背景速度场资料,计算了区域地壳应变率场和地震矩累积率场。结果表明,昆仑山口西地震前,东昆仑断裂的东西大滩段和玛尼-玉树断裂西段为该区域2个最显著的地震矩累积率高值区,其中东昆仑断裂的东西大滩段高值区为后来的昆仑山口西MS8.1地震的发震段  相似文献   

14.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

15.
围绕东昆仑断裂带强震构造背景及巴颜喀拉断块动力学环境,分析了1900年以来断块边界强震活动及强震周期性特征,探讨了东昆仑断裂带东段的强震危险性。  相似文献   

16.
Complex geometrical structures on strike-slip faults would likely affect fault behavior such as strain accumulation and distribution, seismic rupture process, etc. The Xianshuihe Fault has been considered to be a Holocene active strike-slip fault with a high horizontal slip rate along the eastern margin of the Tibetan plateau. During the past 300 years, the Xianshuihe Fault produced 8 earthquakes with magnitude≥7 along the whole fault and showed strong activities of large earthquakes. Taking the Huiyuansi Basin as a structure boundary, the northwestern and southeastern segments of the Xianshuihe Fault show different characteristics. The northwestern segment, consisting of the Luhuo, Daofu and Qianning sections, shows a left-stepping en echelon pattern by simple fault strands. However, the southeastern segment(Huiyuansi-Kangding segment)has a complex structure and is divided into three sub-faults: the Yalahe, Selaha and Zheduotang Faults. To the south of Kangding County, the Moxi segment of the Xianshuihe Fault shows a simple structure. The previous studies suggest that the three sub-faults(the Yalahe, Selaha and Zheduotang Faults of the Huiyuansi-Kangding segment)unevenly distribute the strain of the northwestern segment of the Xianshuihe Fault. However, the disagreement of the new activity of the Yalahe Fault limits the understanding of the strain distribution model of the Huiyuansi-Kangding segment. Most scholars believed that the Yalahe Fault is a Holocene active fault. However, Zhang et al.(2017)used low-temperature thermochronology to study the cooling history of the Gongga rock mass, and suggested that the Yalahe Fault is now inactive and the latest activity of the Xianshuihe Fault has moved westward over the Selaha Fault. The Yalahe Fault is the only segment of the Xianshuihe Fault that lacks records of the strong historical earthquakes. Moreover, the Yalahe Fault is located in the alpine valley area, and the previous traffic conditions were very bad. Thus, the previous research on fault activity of the fault relied mainly on the interpretation of remote sensing, and the uncertainty was relatively large. Through remote sensing and field investigation, we found the geological and geomorphological evidence for Holocene activity of the Yalahe Fault. Moreover, we found a well-preserved seismic surface rupture zone with a length of about 10km near the Yariacuo and the co-seismic offsets of the earthquake are about 2.5~3.5m. In addition, we also advance the new active fault track of the Yalahe Fault to Yala Town near Kangding County. In Wangmu and Yala Town, we found the geological evidence for the latest fault activity that the Holocene alluvial fans were dislocated by the fault. These evidences suggest that the Yalahe Fault is a Holocene active fault, and has the seismogenic tectonic condition to produce a large earthquake, just like the Selaha and Zheduotang Faults. These also provide seismic geological evidence for the strain distribution model of the Kangding-Huiyuansi segment of the Xianshuihe Fault.  相似文献   

17.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

18.
侯康明 《华南地震》1998,18(3):28-34
在室内航,卫片解释及野外1:5万大比例尺活断层地质填图等专项研究的基础上,论证了1927年古浪8级大震主发震断裂皇城-双塔断裂带的几何分段及运动学特征。依据断层的几何特征,活动时期,活动强度可将该断裂带分为3段,分别为皇城盆地段(西段)、上寺段(中段)和冬青顶段(东段)。其中东段是古浪地震的发震段,与西段和中段相比,它具有活动时代新、活动强度大等特点,属全新世活动段。1927年古浪地震的发生与其特  相似文献   

19.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号