首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 707 毫秒
1.
改进能力谱法可以较好地评估结构抗震性能,在工程中得到了广泛的应用.本文在此基础上指出,由改进能力谱方法求得的延性是结构的延性需求,并不是结构的实际延性能力,不能以此代表结构在罕遇地震作用下的实际抗震能力.其次,基于弹塑性损伤反应谱(简称"RD谱"),结合模态Pushover分析,提出了基于RD谱的能力谱分析方法,通过R...  相似文献   

2.
基于规范弹性反应谱建立需求谱的方法   总被引:13,自引:3,他引:13  
阐述了通过力的折减系数R和延性系数μ建立弹塑性反应谱的原理,并由新《建筑抗震设计规范》(GB50011-2001)的加速度反应谱建立了弹塑性需求谱,为结合新抗震规范应用能力谱方法进行结构弹塑性分析奠定了基础。同时本文比较了不同的R-μ关系对需求谱的影响。  相似文献   

3.
弹塑性反应谱法中,强度折减系数、延性系数、周期之间的关系模型(R—μ—T关系)是影响计算结果的一个重要参数。各国学者考虑不同地震动记录、滞回模型、场地土条件、阻尼比等参数,提出了不同的模型,但在场地特征对关系影响上存在不同认识。本文按考虑我国场地土类型的模型,分别进行了某高层混合结构在设防7度、7.5度、8度、8.5度、9度下的弹塑性反应谱计算,得到了一系列结构最大层间位移角,并与增量动力分析(IDA)的结果进行了对比。分析表明,考虑我国场地土类型的高层混合结构弹塑性反应谱计算结果与IDA分析50%均值曲线吻合较好。本文计算结果可为弹塑性反应谱法在复杂高层结构中的应用提供基础。  相似文献   

4.
基于能力谱法的SSI体系抗震pushover分析方法   总被引:1,自引:0,他引:1  
本文首先经过2次等效将土与结构相互作用的多自由度体系等效为单自由度体系,并给出了修正反应谱和等价能力谱的确定方法,进而提出了基于能力谱法考虑土与结构动力相互作用(SSI)效应的结构体系pushover分析方法(SSIPA);然后对3种不同高度考虑SSI效应的结构体系在5条地震动作用下采用本文提出的方法进行了算例分析,将结果与非线性时程分析的结果进行了比较,研究了本方法的适用性和准确性;最后,与建筑抗震设计规范的设计反应谱相结合,对9层考虑SSI效应的钢结构用本文提出的方法进行了弹塑性地震反应分析,根据我国抗震设计规范的规定进行抗震性能的评估验证了本方法的可行性。  相似文献   

5.
能力谱方法在桥梁抗震性能评估中的应用研究   总被引:1,自引:0,他引:1  
位移延性是桥梁抗震性能的重要指标之一,以Pushover分析为基础的能力谱方法能够考察结构在地震下的弹塑性位移响应,是抗震性能评估的一种有效手段.文中阐述了能力谱法的基本原理,说明了基于弹塑性反应谱的能力谱方法在求解性能点时不需要进行迭代计算;基于弹性设计反应谱建立了相对应的弹塑性反应谱,结合某实桥,将能力谱方法和增量动力分析方法进行了对比,并根据不同的地震基本烈度和场地土类型进行了抗震性能评估.分析认为,能力谱方法计算简便,对结构1阶振型的地震响应占主导时,具有较好的精度,并能够基于设计反应谱来考察结构的弹塑性抗震性能,可用于桥梁抗震性能的评估.  相似文献   

6.
考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱   总被引:46,自引:13,他引:33  
非线性反应谱是基于性能的抗震设计理论中亟待解决的基础性课题之一。本文将四种场地类别上的641条地震记录,按我国现行抗震规范设计分组的要求分为12组,对大量具有不同屈服强度系数的单自由度体系作了弹塑性时程分析。研究了结构强度水平、周期、场地类别以及设计分组等因素对延性需求的影响。结果表明,在给定屈服强度水平下结构的延性需求强烈地依赖于场地条件、设计分组等因素。对于短周期结构,延性需求随场地土变软而增大,同类场地随设计分组特征周期增大而增大。通过非线性回归分析,建立了与场地类别、设计分组相对应的延性需求谱μ-ξy-T的计算公式。在此公式的基础上,结合现阶段抗震设计规范构建了弹塑性位移反应谱,可用于结构弹塑性位移需求的简化计算,同时讨论了弹塑性位移反应谱的基本特点。  相似文献   

7.
弹塑性时程分析一般用来评估和验算结构抗震性能,如何选取合适的输入地震动是其中关键工作之一。为给结构弹塑性时程分析选取地震动提供合理的参考参数,本文讨论了地震动反应谱参数与结构地震响应之间的相关性。首先建立了6层和7层两个钢筋混凝土(RC)框架结构数值模型,分别对两个结构进行了大量地震动作用下的时程反应分析,并考察了地震反应特点;然后将结构地震响应与地震动反应谱参数建立关系并进行了相关性分析。结果表明:对RC框架而言,结构地震响应与弹性谱参数相关性较小,与等强度反应谱相关性随标准屈服强度降低而增大,与等延性反应谱相关性随延性增大而增大,而与地震动输入能量谱在标准屈服强度较小时相关性最大。建议RC框架结构在进行地震反应时程分析时,可以参考地震动的弹塑性输入能量谱、等强度速度谱和等延性加速度或位移谱,以选取引起结构不同地震反应水平的输入地震动。本文结果和结论可供结构弹塑性时程分析选取合适的输入地震动参考。  相似文献   

8.
钢框架结构直接基于位移抗震性能设计的非迭代法   总被引:1,自引:1,他引:0  
为使直接基于位移的抗震性能设计方法更加简便准确,本文采用一种直接基于位移的非迭代抗震设计方法对钢框架结构进行设计。该方法首先考虑结构的非弹性反应确定等效弹性反应谱和弹塑性反应谱,并建立了使用Newmark-Hall变形折减系数的能力谱的明确表达式。采用能力-需求图方法,确定了结构需要的目标位移与延性、谱位移和谱加速度之间关系的明确表示式,得到结构的刚度和设计基底剪力,进而确定构件截面,完成结构设计。对五层两跨平面钢框架结构进行了直接基于位移的抗震性能设计,设计过程简便,无需迭代程序,不需画出反应谱,通过时程分析验证了设计结果的精确性。本文研究表明:直接基于位移的非迭代抗震设计方法是一种简便、高效、精确的抗震性能设计方法。  相似文献   

9.
随着基于性能抗震设计理论研究的兴起,位移反应谱的研究逐渐受到重视。对于具有长周期特性的隔震结构,其位移响应相对于加速度响应更加显著,有必要对隔震结构的位移响应进行研究。选取特定震源机制、场地条件、震中距和震级的60条地震记录作为外部激励,利用MATLAB编程并计算得到隔震结构的位移反应谱,通过与规范反应谱进行对比分析,探讨利用现行规范谱来预测隔震结构位移需求时存在的一些问题。考虑隔震支座力学参数、地震动特性等因素对位移反应谱的影响,采用标准化和平均化的方式研究位移反应谱的特征,以Eurocode8规范给出的弹性位移反应谱为基础,通过数值拟合方法建立隔震结构非弹性位移设计谱,用于预测隔震层的最大位移需求,快速确定支座类型,极大简化隔震结构设计流程。  相似文献   

10.
条件均值谱(CMS)已成为目前国内外广受关注及认可的结构抗震时程分析选波的目标谱,但其无法同时兼顾多个周期点谱加速度具有相同的地震危险水平,对于须考虑多阶振型影响的长周期结构尚存局限。Newmark-Hall三联谱是基于加速度峰值(PGA)、速度峰值(PGV)和位移峰值(PGD)并联合短、中、长周期相关放大系数建立的反应谱,与短、中、长周期结构均具有天然良好的相关性,其与概率地震危险性分析(PSHA)结合较弱及具有经验化特征。将两种反应谱的优势相结合,即将CMS的“条件分布”理念引入Newmark-Hall三联谱,建立了条件Newmark-Hall三联谱(即CN-H),并提出了以CN-H为目标谱的选波方法(即CN-H方法)。以美国SAC计划设计的3层和9层抗弯钢框架结构为例,将CN-H方法与以CMS为目标谱的选波方法所得结果进行了对比。CN-H方法对于结构反应均值的估计与CMS方法具有一致的准确性,且所得结构反应的离散性也较低,可见CN-H方法对于结构弹塑性时程分析选波具有良好的适用性。  相似文献   

11.
In this paper, a stochastic approach for obtaining damage-based inelastic seismic spectra is proposed. The Park and Ang damage model, which includes displacement ductility and hysteretic energy, is adopted to take into account the cumulative damage phenomenon in structural systems under strong ground motions. Differently from previous studies in this field, damage-based seismic spectra are obtained by means of peak theory of stochastic processes. The following stochastic inelastic seismic spectra are constructed and then analyzed: damage-based displacement and acceleration inelastic spectra, damage-based response modification factor spectra, damage-based yield strength demand spectra and damage-based inelastic displacement ratio spectra.  相似文献   

12.
A recently developed earthquake ground motion model non-stationary in both intensity and frequency content is validated at the inelastic Single-Degree-Of-Freedom (SDOF) structural response level. For the purpose of this study, the earthquake model is calibrated for two actual earthquake records. The objective of a constant (or target) displacement ductility used in conventional earthquake-resistant design is examined from the statistical viewpoint using this non-stationary earthquake model. The non-linear hysteretic structural behaviour is modelled using several idealized hysteretic SDOF structural models. Ensemble-average inelastic response spectra corresponding to various inelastic SDOF response (or damage) parameters and conditioned on a constant displacement ductility response are derived from the two identified stochastic ground motion models. The effects of the type of hysteretic behaviour, the structural parameters, the target displacement ductility factor, and the ground motion model on the statistics of the inelastic response parameters are thoroughly investigated. The results of this parametric study shed further light on the proper interpretation and use of inelastic response or damage parameters in earthquake-resistant design in order to achieve the desirable objective of ‘constant-damage design’. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
The inelastic response of a single-degree-of-freedom (SDOF) system to different sets of earthquake records was analysed to study the significance of ground motion characteristics on structural damage. Six non-linear models were used. The ductility ratio and hysteretic energy index were chosen as two important damage indices to measure the structural damage. The dispersion phenomenon exhibited by yield spectra due to input ground motion was reduced by incorporating the ground motion a/v ratio into the two damage indices. Finally, empirical formulae for estimating two measures of structural damage were developed for each hysteretic model.  相似文献   

14.
Seismic performance of structures is related to the damage inflicted on the structure by the earthquake, which means that formulation of performance‐based design is inherently coupled with damage assessment of the structure. Although the potential for cumulative damage during a long‐duration earthquake is generally recognized, most design codes do not explicitly take into account the damage potential of such events. In this paper, the classical low‐cycle fatigue model commonly used for seismic damage assessment is cast in a framework suitable for incorporating cumulative damage into seismic design. The model, in conjunction with a seismic input energy spectrum, may be used to establish an energy‐based seismic design. In order to ensure satisfactory performance in a structure, the cyclic plastic strain energy capacity of the structure is designed to be larger than or equal to the portion of seismic input energy contributing to cumulative damage. The resulting design spectrum, which depends on the duration of the ground motion, indicates that the lateral strength of the structure must be increased in order to compensate for the increased damage due to an increased number of inelastic cycles that occur in a long‐duration ground motion. Examples of duration‐dependent inelastic design spectra are developed using parameters currently available for the low‐cycle fatigue model. The resulting spectra are also compared with spectra developed using a different cumulative damage model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
During strong earthquakes, the deformation capacity of structures is reduced due to the cumulative damage caused by cyclic load reversals. In the paper, equivalent (reduced) ductility factors have been proposed, which take into account this effect. They are based on different failure hypotheses. Ductility reduction due to low-cycle fatigue is controlled by a dimensionless parameter γ, which is a function of dissipated hysteretic energy, maximum displacement and the natural frequency of the structural system, and which has been proved to be a relatively stable quantity in the whole period range. If approximate values for γ are used, the determination of equivalent ductility is very simple, and thus appropriate for design purposes. The formulae for equivalent ductility factors include damage indices, and permit the designer to choose acceptable level of structural damage explicitly. As an example, equivalent ductility factors have been used to construct inelastic acceleration spectra, which are proportional to strength demand, for the El Centro 1940 SOOE record. The results have been compared with the ‘exact’ spectra obtained by non-linear dynamic analysis.  相似文献   

16.
Modern seismic design allows a structure to develop inelastic response during moderate to severe earthquakes. The emerging performance-based design requires more clearly defined levels of inelastic response, or damage, to be targeted for different earthquake hazard levels. While there are a range of factors that could influence the level of damage and hence the performance, the design strength remains to be a fundamental design parameter that is inherently related to the structural performance. In this paper, the response reduction factor, which is a normalized form of the design strength, is investigated on a direct damage basis. The implications of the damage-based strength reduction factor (SRF), denoted as RD factor, on multiple performance targets are discussed. A series of RD spectra are generated from a large set of ground motions in different groupings to examine the effects of local site condition, earthquake magnitude and distance to rupture on the RD spectra. The overall mean and standard deviation of the RD spectra for different levels of damage are obtained, and simple empirical formulas are proposed.  相似文献   

17.
During severe seismic events, structures designed according to current standards yield and develop inelastic deformations. While the acceleration responses are limited by the yielding strength, these structures develop permanent deformations (and possible damage) due to such yielding. Spectra developed for inelastic structures can help in determining the desired yield levels and the associated inelastic deformations. Some structures made of special materials or equipped with innovative structural systems may yield, but can recover the deformation upon unloading and, thus, may avoid permanent deformations. These structures are known as nonlinear elastic. Often the post yielding excursions are very large and may exceed their toughness (or deformability). By introducing damping in form of supplemental devices, it is possible to control such deformations and keep them within acceptable limits. Spectra for such nonlinear elastic structures and inelastic structures are developed herein, by considering both inherent and supplemental damping. The difference between the two types of damping is addressed both theoretically and numerically. Design examples of several simple structures using the newly developed spectra are presented, which illustrate the importance of lower strength and damping in these nonlinear elastic or inelastic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Failure of one-story precast structures consisting of cantilever columns connected by simply supported beams was widely reported throughout the epicentral regions of the last devastating earthquakes in Turkey. As a single degree of freedom system, precast columns are designed by using the elastic spectrum given in the seismic code and by considering a seismic load reduction factor which takes into account the inelastic behavior of the columns under seismic loads. Although the existing seismic codes consider near-fault shaking effects in the development of elastic response spectra, they do not currently consider the increased inelastic demands that may occur during near-fault ground motion. The current study consists of nonlinear time history analyses of various hypothetical columns having geometric and mass properties which are being used in Turkish precast industry and the evaluation of damage indexes (DI) in terms of peak ground velocity (PGV) and peak ground acceleration (PGA) of the used strong ground motions. It is achieved that near-fault earthquakes create more damages on the columns. This might be one of the main reasons for the collapse of several one-storey precast buildings which were well designed according to the seismic codes in the district of existing faults. The obtained PGV versus DI charts prove that if one increase the sectional dimensions and/or longitudinal reinforcement ratio of the column, the possible damage from near-fault shaking effects could be reduced.  相似文献   

19.
In the present study, the question of inelastic p–Δ effects is examined from the perspective of inelastic spectral ordinates. Inelastic acceleration response spectra are generated using a model which includes the effects of gravity; for each spectrum the ductility factor and the gravity load level (characterized by the stability coefficient) are held constant. Amplification spectra are generated by taking the ratio between spectra with and without gravity effects. The results are analysed statistically and a formula for the amplification factor as a function of the relevant parameters is obtained. Special care is taken to present a formulation that is simple and useful in the context of practical earthquake engineering design. Some currently used p–Δ amplification factors are discussed in the light of the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号