首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining Earth’s structure is a fundamental goal of Earth science, and geophysical methods play a prominent role in investigating Earth’s interior. Geochemical, cosmochemical, and petrological analyses of terrestrial samples and meteoritic material provide equally important insights. Complementary information comes from high-pressure mineral physics and chemistry, i.e., use of sophisticated experimental techniques and numerical methods that are capable of attaining or simulating physical properties at very high pressures and temperatures, thereby allowing recovered samples from Earth’s crust and mantle to be analyzed in the laboratory or simulated computationally at the conditions that prevail in Earth’s mantle and core. This is particularly important given that the vast bulk of Earth’s interior is geochemically unsampled. This paper describes a quantitative approach that combines data and results from mineral physics, petrological analyses of mantle minerals, and geophysical inverse calculations, in order to map geophysical data directly for mantle composition (major element chemistry and water content) and thermal state. We illustrate the methodology by inverting a set of long-period electromagnetic response functions beneath six geomagnetic stations that cover a range of geological settings for major element chemistry, water content, and thermal state of the mantle. The results indicate that interior structure and constitution of the mantle can be well-retrieved given a specific set of measurements describing (1) the conductivity of mantle minerals, (2) the partitioning behavior of water between major upper mantle and transition-zone minerals, and (3) the ability of nominally anhydrous minerals to store water in their crystal structures. Specifically, upper mantle water contents determined here bracket the ranges obtained from analyses of natural samples, whereas transition-zone water concentration is an order-of-magnitude greater than that of the upper mantle and appears to vary laterally underneath the investigated locations.  相似文献   

2.
Understanding the processes that occur in the transition from the Pacific Ocean to Eurasia is key to constructing the tectonic models of the Earth’s shells and the convection models of the upper mantle. The electromagnetic methods permit estimating the temperature and fluid content (and/or carbon (graphite) content) in the Earth’s interior. These estimates are independent of the traditionally used estimates based on seismic methods because the dependence of electrical conductivity on the physical properties of the rock is based on different principles than the behavior of the elastic waves. The region is characterized by a complicated geological structure with intense three-dimensional (3D) surface heterogeneities, which significantly aggravate the retrieval of the information about the deep horizons in the structure of the Earth’s mantle from the observed electromagnetic (EM) fields. The detailed analysis of the nature of the deep electrical conductivity and structural features of the transition from the Pacific to Eurasia included numerical modeling of the typical two- and three-dimensional models has been carried out. Based on this analysis, the approaches that increase the reliability of the interpretation of the results of the EM studies are suggested.  相似文献   

3.
The geological-geophysical and petrological-geochemical studies of the Earth’s crust and upper mantle are combined to estimate the state of the lithosphere at the junction zone of Tarim and Tien Shan. The laboratory measurements of electric conductivity in the rocks sampled from the upper mantle and lower crust considered against the geoelectrical and thermal models revealed lherzolite, granulite, and eclogite massifs in the deep section of the Tarim and Tien Shan junction zone. The experimental results suggest that the crustal thickness in the southern Tien Shan attained 35–40 km 70 Ma ago.  相似文献   

4.
A geoelectric structure of the lithosphere is constructed to a depth of 300 km on the basis of experimental electromagnetic studies along the geotraverse crossing all of the major first-order structural zones in the Northern Urals. Important constraints on the crust and upper mantle layering are obtained from electric parameters at various depth levels. Together with the compositions of rocks, including the crust of weathering, structural-tectonic relations between geological objects (complexes and faults) identified at the Earth’s surface and characteristics of the deep geoelectric structure are established in upper parts of the section.  相似文献   

5.
青藏高原东缘地壳上地幔电性结构研究进展   总被引:6,自引:2,他引:4       下载免费PDF全文
经过数十年的努力,中国学者针对青藏高原东缘地壳上地幔探测,累积完成超过20000 km的大地电磁测深剖面,取得了一系列重要科学数据和认识,为青藏高原东缘构造格局、地壳上地幔电性结构、地震机制和动力学研究奠定了基础.根据青藏高原东缘的主要构造和断裂分布特征,本文重点对龙门山构造带、川滇构造带和三江构造带三个构造带分区进行研究,主要依据大地电磁探测工作成果和壳幔电性结构特征,系统地对青藏高原东缘地壳上地幔电性结构、与扬子西缘接触关系、汶川地震和芦山地震的电性孕震环境及弱物质流通道等几个方面进行了梳理和分析.一是青藏高原东缘地壳表层岩块和物质沿壳内高导层向龙门山造山带仰冲推覆,表现为逆冲推覆特征的薄皮构造;二是高原东部地壳中下部及上地幔顶部向龙门山造山带和上扬子地块西缘岩石圈深部俯冲,呈现刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔形构造;三是将汶川地震和芦山地震的震源投影到大地电磁剖面上,发现震源位于剖面下方的高阻块体与低阻体之间靠近高阻体的一侧,龙门山构造带岩石圈表现出高阻、高密度和高速的"三高"特征,这种非均匀电性结构可能构成地震孕育发生条件;四是川滇和三江地区的多条大地电磁剖面探测结果表明,在青藏高原东缘中下地壳存在下地壳流和局部管道流,大地电磁结果对其空间分布形态、位置及大小进行了较好的刻画.根据研究区壳幔电性结构特征的构造解析和综合实例分析,总结了青藏高原东缘六类壳幔电性结构模型,提出了下一步重点研究领域和目标.总之,青藏高原东缘壳幔电性结构的研究对揭示研究区岩石圈结构和构造格局提供了重要依据,对油气及矿产资源远景评价提供了背景资料,对"Y"型多地震区的构造关系和发震机理研究具有重要指导意义.  相似文献   

6.
The methods and results of electromagnetic soundings (EMS) performed in the transition zone from the Moscow syneclise to the Voronezh anteclise in the vicinity of the MSU geophysical base are considered. This base is located in the village of Aleksandrovka in the Yukhnov district of Kaluga area. The composite EMS curves characterizing rock complexes composing the sedimentary cover are constructed, and changes in these complexes within the specified transition zone are traced. The standard curves of magnetotelluric (MT) and magnetovariational (MV) soundings are constructed from the results of long-term measurements at the ALX observation point located at the Moscow State University’s (MSU) geophysical base. The maps of thickness and total longitudinal conductance of the sedimentary cover are constructed from the results of interpretation of MT data obtained in the region. A conductor in the consolidated Earth’s crust is identified within the Voronezh anteclise. Prospects for further investigations of the region are associated with the tracing of the crustal conductor within the Voronezh anteclise, as well as with the organization of an observatory at the MSU’s geophysical base in order to perform long-term measurements of the electromagnetic (EM) and other geophysical fields.  相似文献   

7.
带地形的大地电磁二维正演数值模拟多数基于电性各向同性理论,由于地球内部电性各向异性现象的普遍存在,基于电性各向异性理论研究地形起伏情况下大地电磁二维正演数值模拟就显得非常迫切.本文首先由麦克斯韦方程出发,引入张量电导率,求得一组关于平行走向的电场分量Ex和磁场分量Hx的二阶偏微分方程,使用有限差分法求解出Ex和Hx的近似解,并以此求得其他场分量;其次,引入地形因素,改变变量在网格节点中的排列方式,选择交错排列方式从而给有限差分系数矩阵的最大带宽分配合理的存储空间;最后,使用Weaver的方法解决TM模式下,在地-空分界面垂直于构造走向的一些区域存在不同电导率的问题.通过对带地形的二维电性各向异性结构做正演模拟,研究地形因素对大地电磁响应的影响;以电性各向异性理论为基础,将地形因素引入对实测大地电磁资料的处理中,通过做二维正演拟合和未引入地形因素的结果做对比,说明电性各向异性现象的普遍存在,认识地形因素对观测大地电磁场的影响,为今后分析解释实测大地电磁资料包含地形因素和电性各向异性情况提供理论基础和技术指导.  相似文献   

8.
Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth’s interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.  相似文献   

9.
为了获取青藏高原东北缘至鄂尔多斯地块的壳幔电性结构,研究祁连造山带、鄂尔多斯地块及六盘山构造带的构造变形,布设一条甘肃陇西至陕西黄陵的近东西向大地电磁测深剖面,获取了91个大地电磁测深点的响应.经过对全剖面观测资料的数据处理、分析及二维反演,获得了剖面壳幔电性结构模型.研究结果表明:剖面横向可划分为三个区块,分别对应祁连造山带、六盘山构造带与鄂尔多斯地块;祁连造山带东段可能残存沟弧盆体系的构造格架,青藏高原北东向生长可能是在这一先存格架上的叠加与改造;六盘山构造带壳幔结构复杂,以中地壳拆离断层为界,上地壳发育拆离断层系统而下地壳挤压缩短增厚;鄂尔多斯地块成层性较好,地块总体较为稳定,但局部经历了与地幔上涌相关的物质与结构再造.  相似文献   

10.
The possibility of contactless remote estimation of the temperature in the Earth’s interior from surface magnetotelluric (MT) measurements is examined. The neuronet analysis of MT and temperature measurements in the Bishkek geodynamic research area (the Northern Tien Shan) showed that a contactless electromagnetic geothermometer can in principle be realized. An optimal method including MT measurements and treatment of available thermograms is developed. The method minimizes uncertainties of the remote temperature estimation. The use of six to eight thermograms for calibration of electromagnetic data is shown to provide a 12% relative error of prediction, and a priori geological information available for the region under study can reduce this error. Areas of practical application of a contactless electromagnetic geothermometer are outlined.  相似文献   

11.
Recent studies have shown that major nominally anhydrous minerals in the Earth’s mantle, such as olivine, pyroxene and garnet, can incorporate considerable amounts of water as structurally bound hydroxyl. Even a small amount of water is present in mantle minerals, it can strongly affect a number of physical properties, including density, sound velocity, melting temperature, and electrical conductivities. The presence of water can also influence the dynamic behavior, lead to lateral velocity heterogeneities, and affect the material circulation of the Earth’s deep interior. In particular, seismic studies have reported the existence of low-velocity zones in various locations of the Earth’s upper mantle and transition zone, which has been expected to be associated with the presence of water in the region. In the past two decades, the effect of water on the elasticity and sound velocities of minerals at relevant pressure-temperature (P-T) conditions of the Earth’s mantle attracted extensive interests. Combining the high P-T experimental and theoretical mineralogical results with seismic observations provides crucial constraints on the distribution of water in the Earth’s mantle. In this study, we summarize recent experimental and theoretical mineral physics results on how water affects the elasticity and sound velocity of nominally anhydrous minerals in the Earth’s mantle, which aims to provide new insights into the effect of hydration on the density and velocity profile of the Earth’s mantle, which are of particular importance in understanding of water distribution in the region.  相似文献   

12.
This part of the paper addresses the geotectonic interpretation of the velocity model obtained from the results of seismic studies under the DOBRE-4 project in Ukraine. The velocity field does not show distinct lateral changes from the Precambrian platform towards the younger tectonic structures in the southwest. Hence, based on the seismic data alone, it is not possible to recognize the tectonic units that are known on the surface. The Moho has an undulating pattern over an interval with a length of ~150 km. The amplitude of the undulations reaches 8 to 17 km. The similar wavelike behavior, although on a shorter spatial scale and lower amplitude, is also typical of the upper crust and upper mantle. The presence of several separate horizons in the folded crust revealed by the velocity model is consistent with the presence of the folded systems which have different extensions on the different depth levels in the Earth’s crust. This situation is believed to be typical of folding on the lithospheric scale and to reflect the rheological stratification of the crust. The DOBRE-4 velocity section of the crust and adjacent part of the mantle promotes a clearer view of the geodynamical model describing the formation of the southwestern part of East European Platform in the Early Precambrian from the plate’s tectonic standpoint.  相似文献   

13.
Estimates are obtained for the energy cycle of geodynamics, namely, the contributions of the geothermal flux to the generation rate of the kinetic energy of convective motions in the mantle and the generation of stresses in the crust that are later released during earthquakes. As follows from theoretical considerations, about half of the geothermal flux is spent on the generation of motions in the mantle, and the fraction of the total geothermal flux from the Earth’s interior that is spent on the seismic process is estimated at 0.5%. This estimate is obtained with the use of data of global earthquake catalogs. For volcanic processes, this fraction is smaller by two orders of magnitude. The energies required for the formation of the Earth’s surface topography and for seismic activity are comparable.  相似文献   

14.
It is established for the first time that there are several regions in Ukraine, in which the earthquakes occurring within platform territory are correlated to the anomalous conductive structures in the Earth’s crust and upper mantle. These regions are identified as (1) Donbass and the eastern part of the Dnieper-Donetsk Depression (DDD); (2) eastern margin of the Ingulets-Krivoi Rog suture zone in the area of the Krivoi Rog-Kremenchug fault zone; (3) the western part of the Cis-Azov megablock; (4) the western boundary of the Ukrainian Shield and its slope; (5) North Dobruja and Pre-Dobrujan Depression. The reconstructed tree-dimensional (3D) geoelectrical models of the Earth’s crust and upper mantle feature anomalously low values of electric resistivity. The earthquake sources in the platform areas of Ukraine are localized above the top and in the upper parts of the crustal anomalies of electrical conductivity.  相似文献   

15.
The results of studying the deep structure of the Earth’s crust and upper mantle in the central part of the Russian platform from receiver functions are presented. The records of teleseismic waves by the Monakovo small-aperture seismic array in the region of the northwestern slope of the Tokmovskii Arch of the Volga–Kama anteclise are used. The modification of the P-receiver function method (Vinnik, 1977) suggested in (Sanina et al., 2014) for analyzing the receiver functions in the regions with a complexly structured upper part of the section and the presence of a thick sedimentary cover is applied. The method is based on separating the high- and low-frequency components of the seismic record and successive reconstruction of the V-s velocity section in the upper part of the crust, which is performed first and, next, the entire deep section of the crust and the mantle down to a depth of ~300 km. The positions of the seismic conversion boundaries in the crust and upper mantle beneath the Monakovo array are determined. The upper mantle velocity section constructed based on the observations at the Mikhnevo array (Sanina et al., 2014) is compared with the world data on the ancient Precambrian platform.  相似文献   

16.
Beyond KTB - electrical conductivity of the deep continental crust   总被引:8,自引:0,他引:8  
Great strides have been made in understanding the upper part of the crust by in-situ logging in, and laboratory experiments on core recovered from super-deep bore-holes such as the KTB. These boreholes do not extend into the lower crust, and can contribute little to the elucidation of mechanisms that produce the high electrical conductivities that are commonly observed therein by magneto-telluric (MT) methods. Laboratory studies at simulated lower crustal conditions of temperature, pressure and saturation, on electrolyte saturated rocks thought to have been derived from the lower crust, have not been possible up until now due to their experimental difficulty. It is necessary to subject electrolyte-saturated rock samples to independently controlled confining and pore-fluid pressure, which implies that the rock be sleeved in some impermeable but deformable material, that can withstand the very high temperatures required. Metals are the only materials capable of being used, but these cause great difficulties for cell sealing and conductivity measurement. In this paper we describe recent breakthroughs in experimental work, specifically the development of two new types of sophisticated metal/ceramic seal, and a conductivity measurement technique that enables the measurement of saturated rock conductivity in the presence of a highly conducting metallic sleeve. The advances in experimental technique have enabled us to obtain data on the electrical conductivity of brine saturated basic, acidic and graphite-bearing rocks at lower crustal temperatures and raised pressures. These data have facilitated the comparison of MT derived crustal electrical conductivity profiles with profiles obtained from laboratory experiments for the first time. Initial modelling shows a good agreement between laboratory derived and MT derived profiles only if the mid-crust is composed of amphibolite pervaded by aqueous fluids, and the lower crust is composed of granulite that is saturated with aqueous fluids and/or contains interconnected grain surface films of graphite. The experimental data are consistent with a three layer crust consisting of an aqueous fluid saturated acidic uppermost layer, above an aqueous fluid saturated amphibolite mid-crust, and a granulite lowermost crust, which may or may not be saturated with aqueous fluids, but if not, requires the presence of an additional conduction mechanism such as conduction through thin graphite films.  相似文献   

17.
Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.  相似文献   

18.
Electromagnetic studies of global geodynamic processes   总被引:1,自引:0,他引:1  
The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes.The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation.The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed.The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.  相似文献   

19.
The contribution made by V.V. Beloussov (1907–1990), an outstanding Earth scientist in the former Soviet Union and Russia, to the development of planetary geophysics is considered. Beloussov was a brilliant coordinator of international cooperation and direct inspirer of international scientific programs of paramount importance. He took up one of the key positions in organizing and holding the International Geophysical Year (IGY) in 1957–1958. In 1960, Beloussov was elected President of the International Union of Geodesy and Geophysics and proposed the project “The upper mantle and its influence on the Earth’s crust,” which subsequently became known worldwide as the Upper Mantle Project. The project underlined that the experience of the IGY should be extended to studies of the deep structure of the Earth and the processes taking place in the Earth’s interior. The fulfillment of this and the subsequent Geodynamic project resulted in a breakthrough in the knowledge about the deep structure of the Earth, particularly the structure of the oceans. Beloussov actively advocated integrating science of the Earth, geonomy, and in his scientific research sought a geonomic approach incorporating the entire complex of geological, geophysical, and geochemical data. Beloussov’s scientific heritage contains propositions that are of current importance and can be involved in modern developments of the Earth sciences.  相似文献   

20.
Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号