首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
This paper presents low frequency wavenumbers in a seven-storey reinforced concrete building estimated from its recorded response to eleven earthquakes, one of which (1994 Northridge) caused visible structural damage, and two of which are its aftershocks. The wavenumbers, Ki,j(f), are estimated from pairs (i,j) of records at neighboring recording sites in the building, distributed vertically or horizontally. Changes in Ki,j(f) from one event to another are compared in the undamaged (lower) and in the damaged (upper) part of the building, with the aim to find whether trends in Ki,j(f) can indicate damage. The results suggest significant and permanent increase of the wavenumbers in the damaged parts for the 1994 Northridge earthquake and its aftershocks, which is not the case for the other events in the damaged parts, and for all eleven events in the undamaged parts of the building. This increase in wavenumbers in the damaged parts can be explained by reduced wave velocities through the damaged structural members, and by scattering of waves from the discontinuities created by the damage. It is concluded from this qualitative analysis that wavenumbers estimated from strong motion recordings in a building can indicate location of damage, and that it would be useful to refine further this method (extend it to higher frequencies, and add the capability to quantify the damage). However, this would require more dense strong motion instrumentation in buildings than currently available. Deployment of dense arrays in selected buildings would provide data for further work on this subject.  相似文献   

2.
Seismic anisotropy in geological media is now widely accepted. Parametrizations and explicit approximations for the velocities in such media, considered as purely elastic and moderately anisotropic, are now standards and have even been extended to arbitrary types of anisotropy. In the case of attenuating media, some authors have also recently published different parametrizations and velocity and attenuation approximations in viscoelastic anisotropic media of particular symmetry type (e.g., transversely isotropic or orthorhombic). This paper extends such work to media of arbitrary anisotropy type, that is to say to triclinic media. In the case of homogeneous waves and using the so‐called ‘correspondence principle’, it is shown that the viscoelastic equations (for the phase velocities, phase slownesses, moduli, wavenumbers, etc.) are formally identical to the corresponding purely elastic equations available in the literature provided that all the corresponding quantities are complex (except the unit vector in the propagation direction that remains real). In contrast to previous work, the new parametrization uses complex anisotropy parameters and constitutes a simple extension to viscoelastic media of previous work dealing with non‐attenuating elastic media of arbitrary anisotropy type. We make the link between these new complex anisotropy parameters and measurable parameters, as well as with previously published anisotropy parameters, demonstrating the usefulness of the new parametrization. We compute the explicit complete directional dependence of the exact and of the approximate (first and higher‐order perturbation) complex phase velocities of the three body waves (qP, qS1 and qS2). The exact equations are successfully compared with the ultrasonic phase velocities and phase attenuations of the three body waves measured in a strongly attenuating water‐saturated sample of Vosges sandstone exhibiting moderate velocity anisotropy but very strong attenuation anisotropy. The approximate formulas are checked on experimental data. Compared to the exact solutions, the errors observed on the first‐order approximate velocities are small (<1%) for qP‐waves and moderate (<10%) for qS‐waves. The corresponding errors on the quality factor Q are moderate (<6%) for qP‐waves but critically large (up to 160%) for the qS‐waves. The use of higher‐order approximations substantially improves the accuracy, for instance typical maximum relative errors do not exceed 0.06% on all the velocities and 0.6% on all the quality factors Q, for third‐order approximations. All the results obtained on other rock samples confirm the results obtained on this rock. The simplicity of the derivations and the generality of the results are striking and particularly convenient for practical applications.  相似文献   

3.
本文利用三个堪察加地震和两个阿拉斯加地震在我国某些地震台上所记录的乐夫波,进行了相位对比,用最小二乘法分别计算了各地区的乐夫波相速度。将观察的相速度与理论曲线相比较,得到各地区的地壳厚度。 理论曲线系根据多尔曼(Dorman)208模型的数据,采用β_1=3.53公里/秒,ρ_1=2.78克/厘米~3  相似文献   

4.
我国境内瑞利波的相速度   总被引:1,自引:4,他引:1       下载免费PDF全文
本文利用新不列颠岛两个地震在十二个基本台站所记录到的瑞利波,计算了我国不同地区的相速度.着重讨论鉴别和对比不同台站记录中同一震相的方法.在大部分台站的记录中,见到有周期约为35秒的相位,和后面的位相比较,它的周期较大,振幅较小.波形的对比对初步鉴别震相有很大的帮助.详细的震相对比是根据周期随距离变化的规律和各震相到时的规律.两个地震所得的相速度很符合.计算的结果表明:利用三台计算相速度时,如果射线的路程差别较大,海洋路程的校正是不能忽略的.因为有关我国地壳构造的资料还很少,我们所得的瑞利波相速度只能与普瑞司修正后非洲大陆的相速度理论相比较,由此得到我国不同地区的地壳厚度.这样所得的厚度,虽然不能视为最后的结果,但是它们仍然表现与主要地质单元之间有密切的联系.  相似文献   

5.
There are several important wavenumber sampling issues associated with 2.5D seismic modelling in the frequency domain, which need careful attention if accurate results are to be obtained. At certain critical wavenumbers there exist rapid disruptions in the mainly smooth oscillatory spectra. The amplitudes of these disruptions can be very large, and this affects the accuracy of the inverse Fourier transformed frequency-space domain solution. In anisotropic elastic media there are critical wavenumbers associated with each wave mode—the quasi-P (qP) wave, and the two quasi-shear (qS1 and qS2) waves. A small wavenumber sampling interval is desirable in order to capture the highly oscillatory nature of the wavenumber spectrum, especially at increasing distance from the source. Obviously a small wavenumber sampling interval adds greatly to the computational effort because a 2D problem must be solved for every wavenumber and every frequency. The discretisation should be carried out up to some maximum wavenumber, beyond which the field becomes evanescent (exponentially decaying or diffusive). For receivers close to the source, activity persists beyond the critical wavenumber associated with the minimum shear wave velocity in the model. Fortunately, for receivers well removed from the source, the contribution from the evanescent energy is negligible and so there is no need to sample beyond this critical wavenumber. Sampling at Gauss–Legendre spacings is a satisfactory approach for acoustic media, but it is not practical in elastic media due to the difficulty of partitioning the integration around the different critical wavenumbers. We found to our surprise that in transversely isotropic media, the critical wavenumbers are independent of wave direction, but always occur at those wavenumbers corresponding to the maximum phase velocities of the three wave modes (qP, qS1 and qS2), which depend only on the elastic constants and the density. Additionally, we have observed that intermediate layers between source and receiver can filter out to a large degree, the sharp irregularities around the critical wavenumbers in the ω–k y spectra. We have found that, using the spectral element method, the singularities (poles) at the critical wavenumbers which exist with analytic solutions, do not arise. However, the troublesome spike-like behaviour still occurs and can be damped out without distorting the spectrum elsewhere, through the introduction of slight attenuation.  相似文献   

6.
In order to measure turbulent quantities in coastal waters, one must either avoid or confront the confounding effect of waves. In previous work, we have developed a method to cancel waves when using the variance technique to compute Reynolds stress from acoustic Doppler current profiler (ADCP) data. In this paper, we extend this wave cancellation methodology to measurements of turbulent kinetic energy and dissipation using velocities measured along a single acoustic beam. Velocity profiles were collected using a Teledyne/RDI 1,200 kHz ADCP and a Nortek AWAC. The AWAC has a vertical beam that was programmed by Nortek to deliver profiles of vertical velocity. Vertical velocities are desirable both because they eliminate sources of phase error in the wave cancellation procedure and because they constrain measurement uncertainty with respect to turbulent anisotropy. Results indicate that acoustic profiles taken in standard Doppler mode, to which the vertical beam of the AWAC was limited, were too noisy to resolve turbulence under the deployment conditions herein. Pulse-to-pulse coherent modes such as those available on the ADCP were sufficiently low noise to resolve turbulent signals; however, vertical beam data are not available for this device. Nevertheless, our wave cancellation methodology was successful in removing the overwhelming variance associated with waves from both instruments, allowing realistic estimates of Reynolds stress, turbulent kinetic energy, and dissipation from the ADCP. This method holds even more promise as low-noise operating modes are developed for vertical beam acoustic profiling instruments such as the AWAC.  相似文献   

7.
AstochasticmodeloftheFourierphaseofstron groundmotionZhen-PengLIAO;(廖振鹏)andXingJIN(金星)(InstituteofEngineeringMechanics,StateS...  相似文献   

8.
本文利用了北京大学在山西地堑的34个台站以及中国地震局台网中心在鄂尔多斯地区46个台站的远震波形数据,运用双平面波干涉的面波层析成像方法,提取瑞利面波相速度频散曲线,开展台阵覆盖区三维速度结构反演,据此分析了研究区地壳和上地幔的结构特征。结果表明,瑞利面波相速度分区特征显著,山西断陷盆地和渭河断陷盆地的相速度整体偏低。鄂尔多斯块体在莫霍面以下有明显高速异常,表明该地块为构造稳定的克拉通块体,鄂尔多斯块体的岩石圈下界面在120~140km的深度左右。与此相反,山西断陷盆地和渭河断陷盆地地下70~120km左右均有低速异常,显示这两个地区构造活动活跃,这也与该区域历史上多次发生强震是相符的。  相似文献   

9.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

10.
Artificial periodic irregularities (API) are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Troms0, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHP incoherent-scatter-radar (ISR) data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the data below 60 km but is larger above 60 km by a factor of up to 2 at 64 km. The comparisons with the model are considered to be a good basis for more refined comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号