首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泥沙问题是三峡工程建设与运行中的关键技术问题之一,只有妥善处理好泥沙问题,才能保证三峡工程长期有效使用,维持水库功能的全面发挥。本文首先结合实测水文、河道地形观测资料,对三峡水库运行近20年来的泥沙淤积特性及水库排沙比进行了较为全面的分析研究,并与已有研究成果进行了对比;其次,围绕防洪、航运以及坝前段的泥沙淤积等方面,进一步分析了水库淤积产生的影响。结果表明:三峡水库蓄水以来,在不考虑区间来沙的情况下,三峡水库共淤积泥沙20.484亿t,近似年均淤积1.102亿t,水库排沙比为23.6%,水库年均淤积量为原论证预测值的33%。其中,库区干流段累计淤积泥沙17.835亿m3(变动回水区冲刷0.694亿m3;常年回水区淤积18.529亿m3),淤积在水库防洪库容内的泥沙为1.648亿m3(干、支流分别淤积1.517亿m3和0.131亿m3),占水库防洪库容的0.74%,“十一五”攻关阶段研究得出的多年平均淤积量及排沙比较实测值均偏大,变动回水区冲淤则出现反向的...  相似文献   

2.
This paper summarizes the latest developments, future prospects, and proposed countermeasures of reservoir sedimentation and channel scour downstream of the Three Gorges Reservoir (TGR) on the Yangtze River in China. Three key results have been found.(1) The incoming sediment load to the TGR has been significantly lower than expected.(2) The accumulated volume of sediment deposition in the TGR is smaller than expected because the overall sediment delivery ratio is relatively low, and the deposition in the near-dam area of the TGR is still developing.(3) River bed scour in the river reaches downstream of the Gezhouba Dam is still occurring and channel scour has extended to reaches as far downstream as the Hukou reach. Significantly, sedimentation of the TGR is less problematic than expected since the start of operation of the TGR on the one hand;on the other hand, the possible increases in sediment risks from dependence on upstream sediment control, deposition in the reservoir, and scour along middle Yangtze River should be paid more attention.(1) Sediment trapped by dams built along the upper Yangtze River and billion tons of loose materials on unstable slopes produced by the Wenchuan Earthquake could be new sediment sources for the upper Yangtze River. More seriously, possible release of this sediment into the upper Yangtze River due to new earthquakes or extreme climate events could overwhelm the river system, and produce catastrophic consequences.(2) Increasing sediment deposition in the TGR is harmful to the safety and efficiency of project operation and navigation.(3) The drastic scour along the middle Yangtze River has intensified the down-cutting of the riverbed and erosion of revetment, it has already led to increasing risk to flood control structures and ecological safety. It is suggested to continue the Field Observation Program, to initiate research programs and to focus on risks of sedimentation.  相似文献   

3.
金沙江下游4个梯级水电站总装机容量相当于两座三峡水库,是“西电东送”中部地区的源头工程,工程效益发挥对经济社会发展意义重大。2012年以来,向家坝、溪洛渡、乌东德和白鹤滩电站等陆续蓄水运行,层层拦截金沙江的泥沙,2013—2020年向家坝出库年输沙量均值下降至152万t,减幅超过99%。大量泥沙淤积在梯级水库内,同时向家坝以下河道发生长距离冲刷。本文以自金沙江下游工程筹建以来的观测资料为基础,针对梯级水库的泥沙淤积和坝下游河道冲刷规律开展研究,结果表明:金沙江下游四个梯级电站自建成运行至2020年底,累计淤积泥沙约5.98亿m3,其中溪洛渡库区淤积量占比达92.5%,2013-2020年溪洛渡和向家坝水库排沙比分别为2.64%和22.2%,其水库泥沙主要淤积在常年回水区的干流河道内,以死库容内淤积为主,侵占有效库容的比例小于1.3%。金沙江下游库区干流河道的峡谷特征明显,淤积多表现为主河槽的平铺式淤高。溪洛渡和向家坝库区淤积的泥沙沿程分选特征明显,越靠近坝前,中数粒径减小、细颗粒泥沙沙量百分数增加,极细颗粒泥沙会在库区一定范围内大量沉积。向家坝下游河床普遍冲刷,但...  相似文献   

4.
ON SOME KEY SEDIMENTATION PROBLEMS OF THREE GORGES PROJECT (TGP)   总被引:1,自引:0,他引:1  
I. INTRODUCTIONThe Three Gorges Project (TGP) being planned is to be located on the Yangtze River at Sandouplug, 44 km upstream of Yichang (Fig. l). A scheme studied in the feasibility stage has the crest ofthe dam placed at 185 m with a maximums height o…  相似文献   

5.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   

6.
Reservoirs are the most important constructions for water resources management and flood control. Great concern has been paid to the effects of reservoir on downstream area and the differences between inflows and dam site floods due to the changes of upstream flow generation and concentration conditions after reservoir’s impoundment. These differences result in inconsistency between inflow quantiles and the reservoir design criteria derived by dam site flood series, which can be a potential risk and must be quantificationally evaluated. In this study, flood frequency analysis (FFA) and flood control risk analysis (FCRA) methods are used with the long reservoir inflow series derived from a multiple inputs and single output model and a copula-based inflow estimation model. The results of FFA and FCRA are compared and the influences on reservoir flood management are also discussed. The Three Gorges Reservoir (TGR) in China is selected as a case study. Results show that the differences between the TGR inflow and dam site floods are significant which result in changes on its flood control risk rates. The mean values of TGR’s annual maximum inflow peak discharge and 3 days flood volume have increased 5.58 and 3.85% than the dam site ones, while declined by 1.82 and 1.72% for the annual maximum 7 and 15 days flood volumes. The flood control risk rates of middle and small flood events are increased while extreme flood events are declined. It is shown that the TGR can satisfy the flood control task under current hydrologic regime and the results can offer references for better management of the TGR.  相似文献   

7.
8.
Observation of the operation of the Sanmenxia Reservoir on the Yellow River has led to the conclusion that to preserve a certain effective storage volume for reservoirs built on heavily silt-laden rivers is feasible if the reservoir is operated according to the principle known as "storing the clear water and discharging the muddy flow". The relative stability of the bed elevation at the end of the backwater and the reservoir's erosion and deposition equilibrium depend on the compatibility of the pool level maintained in non-flood seasons with the conditions of flow and sediment load during flood seasons. Operating the reservoir to regulate the flood and sediment load during flood seasons can reduce the rate of aggradation in the Lower Yellow River. The basic condition for applying the operation mode of "storing the clear water and discharging the muddy flow" is that a sufficient amount of water should be used for discharging sediment during flood seasons. Under the condition of extremely low flow years, reservoir sedimentation cannot be avoided even if this operation mode is adopted.  相似文献   

9.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

10.
I.INTRODUCTIONThePtlmped-storagepoll,erprojectofPushiriverisconsistedofupperreservoir,lobal-erreset'oir.watertransmissionSystemandpotvergeneratingsystem.ThelowerreservoirIviththecatchmentbasinareaof1141kmZisthewatersupplierl-c'hichislocatedonthedownstreamofthePushiriverinthesouthernpactofNortheastChina.Theupperreservoirisabout300-400metershigherthanthelowerresen!oirattheleftsideoftheriverwithcatchmentbasinareaof1.12km2.Thecharacteristicsoftheprojectandreservoirareshottviintablel-l.Ino…  相似文献   

11.
典型枯水年长江干流硅的分布、输送与滞留   总被引:1,自引:0,他引:1  
于特枯水情年对三峡水库溶解硅和长江干流自涪陵至河口段悬浮颗粒物、溶解硅、生物硅和叶绿素a浓度等进行调查.研究表明,在平水期和汛期末,长江干流水体溶解硅和生物硅浓度和通量在其上游受大坝"滞留"效应的影响呈现沿程降低的趋势,中、下游受"两湖"和汉江等的补充作用有明显升高.在枯水年,长江干流水体生物硅浓度占活性硅(溶解硅和生物硅之和)浓度的2%~5%,显著低于平水年的比例(13%),同时也低于世界河流的平均水平(16%).三峡水库在4-12月份减少溶解硅向下游的输送通量,而在1-3月份增加溶解硅的输送通量;水库在枯水年滞留了大约3%~6%的溶解硅.三峡水库内低的初级生产水平和高的生物硅再生速率是其难以对溶解硅形成有效滞留的主要因素.大坝下游会因清水下泄产生潜在的滞留效应,不过还需要更多的数据去量化.  相似文献   

12.
The method of multiple regression is used to analyze the influences of flood events from the coarse sediment producing areas on the channel siltation and fluvial process of the lower Yellow River based on the flood events from 1950 to 1985. The results showed that the flood events from the coarse sediment producing areas carry larger amounts of sediment load and coarser particle sizes than from other source areas, which increases deposition in the lower river channel. And there exist good correlations between channel siltation of the lower reaches of the Yellow River and the coming water and sediment of flood events from the coarse sediment producing areas. Through these correlations, the amounts of sediment deposition in the lower river channel could be roughly estimated based on the runoff and sediment load of flood events from the coarse sediment producing areas. The sediment deposition caused the fluvial process. There exists a complex response of channel form change to the coming water and sediment load of flood events from the coarse sediment producing areas. When the sediment concentration is smaller than 200kg/m3, the ratio between wide-depth ratio after flood and wide-depth ratio before flood((B/h)a / (B/h)b) will increase with the increase of the maximum sediment concentration; when the sediment concentration is near 200kg/m3, (B/h)a / (B/h)b reaches the maximum value; and when the sediment concentration reaches the limits of hyperconcentrated flow, (B/h)a / (B/h)b will decrease with the increase of the maximum sediment concentration. Generally, flood events from the coarse sediment producing areas made channel form of the lower Yellow River deeper and narrower, but a large amount of sediment deposition simultaneously occurs. So, the impacts of flood events from the coarse sediment producing areas on the channel of the lower Yellow River are lessened.  相似文献   

13.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《国际泥沙研究》2016,(3):237-243
The Three Gorges Reservoir (TGR) is suffering from unexpected fine sediment deposition, to better understand the fine sediment transport processes, field measurements were conducted at the Zhongxian and Fengjie reaches. A method based on the sediment diffusion equation was proposed to measure the settling velocities using the Acoustic Doppler Velocimeter (ADV). The backscatter acoustic intensities (BSI) received from the ADV were calibrated against the sediment concentrations measured via water sampling, suggesting a linear relationship in double logarithmic coordinate system. The instantaneous sediment concentration was calculated using the derived relationship, and then the settling velocity was obtained through the proposed procedure. The settling velocities of the fine particles in the TGR were found to vary with the water depth. Most of the effective settling velocities were within the range of 0.1–10 mm/s, which were larger than those of the primary particles, indicating that the flocculation was likely to occur in the TGR. Additionally, it is suggested that the turbulent motion played an important role in the flocculation in the TGR.  相似文献   

15.
《国际泥沙研究》2016,(3):257-263
The effects of sedimentation reduction at the Nakdong River Estuary Barrage (NREB) in Korea were quantitatively analyzed with respect to different sediment control methods using the calibrated and validated two-dimensional model. The countermeasures of sediment dredging, sediment flushing, channel geometry change, and a combination of flushing and channel geometry change were examined for the approach channel of the NREB. The flood event and channel geometries of the 3.8 km section upstream of the NREB surveyed before and after dredging in 2007 were used for modeling conditions. As a result, the half of sediments dredged in 2007 could be eliminated naturally by floods without dredging. The numerical simulation of sediment flushing indicated that the deposition height decreased in the entire simulation section with the minimum and maximum reductions from 0.3 m to 1.3 m in deposition height. The channel contraction method produced quantitatively the largest amount of sedimentation reduction and sediment flushing and dredging followed. Sedimentation reduction by a combination of flushing and channel contraction was up 10%compared to the individual method of channel contraction.  相似文献   

16.
ABSTRACT

The operation of the Three Gorges Reservoir (TGR) affects the evolution of the interactions between the Yangtze River and Dongting Lake in China and water diversions from the river, which are essential to water resources management in this large river–lake system. Due to the lack of up-to-date and detailed channel topographic/bathymetric data, a simplified flow model based on rating curves was developed to simulate discharges in the river system, and to further quantify and differentiate the contributions of river erosion and flow regulation of the TGR at a seasonal scale. The results indicate that the effect of channel alteration counteracts the effect of reservoir regulation in the high-flow periods. The impacts of TGR regulation on water diversions for both pre- and post-flood seasons were significant, but no obvious changes in the discharge diversion ratios were observed on an annual time scale.  相似文献   

17.
三峡水库水环境与水生态研究的进展与展望   总被引:4,自引:0,他引:4  
蔡庆华  孙志禹 《湖泊科学》2012,24(2):169-177
伴随着举世瞩目的三峡工程全面竣工,三峡水库于2010年正式进入年水位落差达30 m的正常运行阶段.水库湖沼学可为环境友好型大坝建设和水库可持续管理提供科学依据.本文在三峡成库8 a以来生态系统长期监测与研究的基础上,对三峡水库水环境现状进行了归纳和总结,分析了水环境动态的时空异质性、水库纵向分区与群落组成、垂向分布及藻类水华的成因和动态,并对三峡水库藻类水华预警与生态-水文调控机制展开了论述.最后,本文尝试给出以下两方面的展望:1)大型水库湖沼学观测研究应有长期的策略;2)近期研究应重点关注水华暴发水动力学机制的量化和水华预警模型及生态水力调度平台的耦合.  相似文献   

18.
STUDYOFMETHODOLOGYFORPHYSICALMODELINGOFSEDIMENTATIONINRESERVOIRYANGGuowei(TheEnglishtexthasbeenreviewedbyMr.CAIXiaoyongandedi...  相似文献   

19.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

20.
三峡小江回水区透明度季节变化及其影响因子分析   总被引:1,自引:0,他引:1  
张呈  郭劲松  李哲  蒲清平  方芳  龙曼  高旭 《湖泊科学》2010,22(2):189-194
三峡成库后其季节调蓄过程使该水域湖沼学特征具有独特性.根据三峡小江流域回水区段为期2年的定位跟踪观测,对透明度(SD)和主要环境指标的相互关系进行分析研究.研究期间,小江回水区透明度均值为170±7cm,各采样点透明度差异不明显且季节变化过程一致,自春末夏初开始降至最低水平,夏季汛期相对稳定,夏末入秋持续升高,冬季维持在较高状态,入春后下降.对透明度和主要环境指标的相关性分析发现,无机悬浮颗粒(PIM)是影响透明度的主要指标.透明度同PIM、Chl.a多元回归模型为:SD=(-89.389±8.101)·lg(PIM)+(-84.008±8.624)·lg(Chl.a)+(264.132±8.232).汛期低水位状态下(145-150m)小江回水区水动力条件趋于天然河道,河道输沙量增加使无机悬浮颗粒含量远高于藻类生物量而成为影响透明度的主要环境指标.在中水位(150-156m)和高水位(156m以上),虽然藻类进入非生长季节,但水位抬升和水体滞留时间的延长促使悬浮颗粒物大量沉淀,悬浮生长于表层水体的藻类成为影响透明度的主要环境指标,生物作用对透明度的影响明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号