首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
求取滑坡体积在当前是一个难题,原因是其为三维分量,并且部分滑面往往在地下。本文提出了3个区域地震滑坡体积优化模型来计算2008年中国汶川M W7.9地震触发滑坡的体积。本文首先基于20m分辨率的震前和震后SPOT 5卫星影像提取到的数字高程模型(DEM)数据,结合少数滑坡的剖面图,获得了1 415处汶川地震滑坡堆积区体积,作为地震滑坡体积模型训练样本。在常规区域滑坡"体积—面积"模型基础上,提出了3个优化模型。分别利用数据的对数化线性拟合与直接非线性拟合方法对1个常规模型和3个优化模型进行拟合。结果表明,采用直接非线性拟合方法并考虑了滑坡长、宽、高、岩性、坡度和峰值地动加速度后,坡向的优化模型标准误差最小,回归得到的滑坡总体积与滑坡真实总体积也非常接近。将这一模型应用于所有汶川地震滑坡,分别得到每个滑坡的体积。最终结果表明,汶川地震滑坡相对密集分布区内的196 007处滑坡的堆积物体积约为1.2×1010 m~3,源区体积约为1×1010 m~3。根据前人"地震震级—滑坡总体积"经验公式得到的结果仅仅是本文结果的7.5%~9%,这提醒我们有必要基于更多的单次地震触发滑坡总体体积数据对"地震震级—滑坡总体积"的关系进行更新。同时,文中的优化模型对同类研究也有显著的参考价值。  相似文献   

2.
利用新技术、新方法,研究历史强震的发震构造及震害,是修订历史强震震源参数的重要内容.本文以1718年通渭M 7.5地震滑坡为研究对象,采用地质学“将今论古”原理,基于历史文献分析、遥感解译、野外验证等方法获得通渭地震滑坡数据库.研究发现,(1)总解译滑坡数量5019处,总面积635 km^2,滑坡密集沿通渭断裂分布,与X度等震线吻合,但范围均向西、向北各扩展约20 km;(2)与2008年汶川M8地震滑坡相比,面积<10^3 m^2的滑坡大量缺失,面积10^3~10^4 m^2的滑坡部分缺失,面积>10^4 m^2的滑坡数量相当;(3)尽管通渭地震滑坡数据库并不完整,但是能够反映极震区中大型滑坡的总体特征,可据此确定极震区范围;(4)通渭地震极震区至少有27处以“泄山”等记录地震滑坡的地名,这些受滑坡影响的居民点集中在通渭断裂两侧,占比超过50%,是致7万人死亡的重要致灾因素.研究认为,在黄土高原地区,确认密集的中大型滑坡体可能由单次历史强震触发,且排除其他远场强震影响之后,可以利用现今多时相的高分辨率卫星影像解译获得“相对完整”的历史地震滑坡数据库,为历史强震震源参数的修订提供基础资料.  相似文献   

3.
2008年5月12日,我国四川省汶川县遭遇了MW7.9级大地震,强烈的地震动以及所带来的地质灾害,致使房屋、桥梁等结构物和构筑物倒塌不计其数,受灾地区人民生命财产和经济社会发展蒙受巨大损失。地质灾害和结构破坏的主要诱因是汶川地震区的强地面运动(又称强地震动)。地震动的研究是地震工程学中很重要的一部分。基于丰富的汶川地震动数据研究好汶川地震的地震动参数对我国的其他地震区、带的地震动研究有很大的借鉴意义。  相似文献   

4.
以高山峡谷为地貌特征的岷江上游地区人口密集,在晚更新世以来发生了数以万计的滑坡,探讨该地区滑坡发生的主要触发因素对该地区的地质灾害防治意义重大。文中从区域降雨特点、滑坡坡形特点、地震震级大小与滑坡面积的对应关系以及叠溪已恢复地震记录的周期性分析等方面入手展开探索性研究。在降雨方面,与滑坡灾害严重的尼泊尔相比,岷江上游无论是累积降雨量还是日降雨量均未达到触发滑坡的关键阈值。在坡形方面,岷江上游的滑坡不具有暴雨触发滑坡形成的坡底峡谷地形特征,而具有地震触发滑坡形成的自上而下较为平坦的坡面特征。在震级大小与滑坡面积的对应关系中,岷江上游的大面积滑坡分布支持地震触发,与暴雨触发的局部小面积滑坡形成鲜明对比。在叠溪已恢复地震记录的周期分析中,我们获得能够导致该地区软沉积物变形的5.0或5.5级地震的复发周期集中于二三十年,而引发大面积滑坡的可能类似汶川特大地震的平均复发间隔为2.6ka。这与中等—特大地震以及滑坡面积随地震震级一般呈现指数增长关系相吻合。据此,我们初步认为,岷江上游地区晚更新世以来发育的大量滑坡由降雨触发的可能性很小,绝大部分可能为地震触发。这一初步认识有待今后的细致研究进一步验证。  相似文献   

5.
采用多层粘弹性模型计算了2008年5月12日汶川Mw7.9地震对周围地区尤其是龙门山断裂带南段的影响,结合地震活动性分析,探讨了2013年4月20日芦山Mw6.6地震的发生机制,并对沿龙门山断裂带芦山地震与汶川地震之间的地震空段进行了分析.计算结果表明,由于下部地壳及上地幔的粘弹性效应,芦山地震震源处对应的汶川地震同震库仑应力变化(△CFS)为-0.1bar以下量级,其后随时间逐渐增加,在芦山地震前增加到了0.4bar(有效摩擦系数为0.4)或0.6bar(有效摩擦系数为0.2)以上.这表明,芦山地震的发生与汶川地震的非弹性触发密切相关.芦山地震与汶川地震之间的地震破裂空段存在1970年大邑M6.2地震的库仑应力阴影区(下降区),汶川地震及芦山地震未能使阴影区发生根本变化,因此,如没有其他不可知因素,该空段短期内整体发生破裂,引发大地震的可能性不大.  相似文献   

6.
以汶川县为研究区,对汶川MS8.0地震震后遥感影像进行精细解译,结合相关调查数据建立了地震诱发地质灾害数据库。经统计,汶川地震在汶川县4 086 km~2境内引发了7 766处滑坡灾害。选取地震烈度、断裂带、水系、高程、坡度和岩性共6个指标,在GIS技术支持下,将层次分析法和信息量法相结合,对汶川县域进行地震诱发滑坡敏感性评价,使用自然断点法按地震诱发滑坡敏感程度将研究区分为低敏感区、中敏感区和高敏感区。其中高敏感区的面积为1 465 km~2,占总面积的35.9%,有6 710个滑坡,占总滑坡数的86.4%。评价结果表明该敏感性评价成果精度较高,能够为区域滑坡灾害预测预报及防治规划设计提供技术支持,也可为其它区域地震诱发滑坡敏感性评价及成果制图提供理论指导和技术参考。  相似文献   

7.
2022年6月1日四川省雅安市芦山县6.1级地震发生后,基于地震震级与历次地震中震区交通状况综合考虑,对震区公路滑坡风险等级开展快速评估工作,使用Newmark模型计算得到研究区内岩土体永久累积位移并划定地震滑坡风险等级。结果显示,在芦山6.1级地震的影响下,研究区内滑坡风险等级由震中区域向四周逐渐降低,与地震动强度的衰减具有相似的规律;区内北西侧的滑坡风险等级要明显高于南东侧,该分布规律与研究区地形地貌特征相吻合;依据划定的危险性等级,在研究区圈定7个公路滑坡高风险区域,收集到的实际7处受灾路段有6处落在公路滑坡高风险区内。验证表明,基于Newmark模型与路网数据划定的公路滑坡高风险区具有较高的可信度,该地震公路滑坡快速评估方法可以为灾后应急救援力量部署及减轻地质灾害造成的损失提供一定帮助。  相似文献   

8.
2013年四川省芦山“4.20”7.0级强烈地震触发滑坡   总被引:5,自引:2,他引:3  
2013年4月20日,四川省芦山县发生了MS7.0地震.文中简要介绍了芦山地震的基本情况与芦山地震区历史地震及其相关地震滑坡情况.依据2008年汶川地震滑坡与地震动峰值加速度(PGA)的空间关系,对芦山地震滑坡大体分布范围进行了推测.根据地震滑坡分类学,将芦山地震滑坡分为破坏型滑坡、连贯型滑坡、流滑型滑坡3大类.其中,破坏型滑坡包括岩质崩塌、岩质滑动、岩质崩滑、土质崩塌、土质滑动等5类;连贯型滑坡包括土质坍塌与慢土流2类;流滑型滑坡为快速流滑.破坏型滑坡如岩质崩塌、岩石滑动、土质崩塌这3类是芦山地震滑坡中最常见的类型.基于震后可利用的高分辨率航片,初步解译得到3 883处滑坡位置点数据.最后,从余震对滑坡的影响,芦山地震滑坡与邻区地震滑坡对比分析,对后续基于高分辨率遥感影像的滑坡精细解译的启示等3个方面开展了分析与讨论.  相似文献   

9.
基于逻辑回归模型的九寨沟地震滑坡危险性评估   总被引:1,自引:0,他引:1  
发生于2017年8月8日的四川九寨沟M_S7. 0地震触发了大量的同震滑坡。基于Geoeye-1震后0. 5m分辨率的遥感影像开展极震区同震滑坡解译,圈定了4 834处滑坡。选择高程、坡度、坡向、水平断层距离、垂直断层距离、震中距离、河流距离、道路距离、TPI指数以及岩性共10个因子作为地震滑坡的影响因子,应用逻辑回归(Logistic Regression,LR)模型开展九寨沟地震滑坡危险性评价,并对评价结果的合理性进行检验。结果表明,基于LR模型的滑坡危险性评价图与实际滑坡发育情况十分吻合,其中五花海—夏莫段、火花海和九寨天堂洲际大饭店—如意坝段均为滑坡危险性极高的区域。采用ROC曲线对危险性评价结果进行模型成功率与预测率的定量评价,结果显示,LR模型的预测精度较为理想,训练样本集和验证样本集的AUC值分别为0. 91和0. 89。文中结论为震区恢复重建工作中地震滑坡的防灾减灾提供了科学参考。  相似文献   

10.
2008年5月12日M_w7.9汶川地震导致的周边断层应力变化   总被引:1,自引:0,他引:1  
2008年5月12日,四川龙门山断裂发生Mw7.9强烈地震,导致重大的人员伤亡和经济损失.据预测,汶川地震余震将持续至少1年,并且不排除发生强余震可能.因此,判断余震可能发生区域,圈定震区周边未来可能发生地震活动的范围,对灾区人员安置、灾后恢复重建以及加强震灾及次生灾害防御具有重要的参考价值.同时,汶川地震及邻区地震活动性为将来研究板内逆冲型地震的同震应力变化,并检验地震的应力触发作用提供了一个非常难得的机会.根据地震的静态触发原理,利用弹性位错理论和分层地壳模型计算了汶川地震引起的周边断层同震应力变化,分析了汶川地震对龙门山及周边各主要活动断层地震活动性的作用和影响.结果表明,汶川地震增加了鲜水河断裂(道孚-康定段)、东昆仑断裂(玛曲-南坪段)、青川断裂、岷江断裂南端以及彭县-灌县断裂、江油-广元断裂、江油-灌县断裂上库仑应力的积累,将提升这些断层上地震发生的概率.由于这些地区人口密集,应加强这些地区的地震监测和灾害预警.青川断裂上记录到的余震表明主震已经触发了该断层的地震活动,余震有向该区迁移的趋势,应密切关注地震向北迁移的态势.彭县-灌县断裂、北川-映秀断裂南段目前发生的余震很少,所积累的构造应力未充分...  相似文献   

11.
12.
A complete understanding to the disasters triggered by giant earthquakes is not only crucial to effectively evaluating the reliability of existing earthquake magnitude, but also supporting the seismic hazard assessment. The great historical earthquake with estimated magnitude of M8.5 in Huaxian County on the 23rd January 1556, which caused a death toll of more than 830 000, is the most serious earthquake on the global record. But for a long time, the knowledge about the hazards of this earthquake has been limited to areas along the causative Huashan piedmont fault(HSPF) and within the Weihe Basin. In this paper, we made a study on earthquake triggered landslides of the 1556 event along but not limited to the HSPF. Using the high-resolution satellite imagery of Google Earth for earthquake-triggered landslide interpretation, we obtained two dense loess landslides areas generated by the 1556 earthquake, which are located at the east end and west end of the HSPF. The number of the interpreted landslides is 1 515 in the west area(WA), which is near to the macro-epicentre, and 2 049 in the east area(EA), respectively. Based on the empirical relationship between the landslide volume and area, we get the estimated landslide volume of 2.85~6.40km3 of WA and EA, which is equivalent or bigger than the value of ~2.8km3 caused by Wenchuan earthquake of MW7.9 on 12th May 2008. These earthquake triggered landslides are the main cause for the death of inhabitants living in houses or loess house caves located outside of the basin, such as Weinan, Lintong, Lantian(affected by WA) and Lingbao(affected by EA). Our results can help deeply understand the distribution characteristics of coseismic disaster of the 1556 Huaxian earthquake to the south of Weihe Basin, and also provide important reference for the modification of the isoseismals.  相似文献   

13.
Over the past geological and historical period, tens of thousands of landslides occurred in the upper reaches of the Minjiang River, an area which is characterized by alpine valleys and has been densely populated over the past several hundreds of years. Discussing the triggering factor of these landslides is of great significance to geological hazard mitigation and prevention in this region. In this paper, we focus on four aspects of regional rainfall, shape features of landslide slopes, the corresponding relationship between landslide area and earthquake magnitude, and the recurring features of the reconstructed palaeoearthquake record at Diexi. Compared with those in Nepal, both mean seasonal rainfall accumulation and mean daily rainfall for the past 30 years are too low to reach the threshold values triggering landslides in the upper reaches of the Minjiang River. Secondly, landslides in the study area are usually absent of inner gorges(canyon topography)on the hillslope toes, which are confirmed in previous studies as typical features of landslides triggered by storms. Thirdly, wide distribution of the landslides in the study area supports our notion of earthquake-triggering because the landslides triggered by storms commonly distribute locally. Fourthly, periodicity analysis of the reconstructed palaeoearthquake record at Diexi provides a few cycles of twenty to thirty years, possibly corresponding to the earthquakes of magnitudes>5.0 or 5.5 which are believed to have caused soft-sediment deformation in the study area. In contrast, like the 2008 MS8.0 Wenchuan earthquake, the average recurrence interval of the large earthquakes in the study area is 2.6ka. They caused tens of thousands of landslides and provided more coarse silt particles for the nearby lake sediments at least in 330 years for each time. This is consistent with exponential increase of earthquake magnitude from large to medium and of the landslide area with the increased earthquake magnitude. To sum up, we suggest that tens of thousands of landslides in the upper reaches of the Minjiang River were most likely triggered by earthquakes instead of storms. This preliminary viewpoint needs further examination in the future.  相似文献   

14.
Strong earthquakes can not only trigger a large number of co-seismic landslides in mountainous areas, but also have an important impact on the development level of geological hazards in the disaster area. Usually, geological hazards caused by strong earthquakes will significantly increase and continue for a considerable period of time before they recover to the pre-earthquake level. Therefore, studying the evolution characteristics of landslides triggered by earthquake is particularly important for the prevention of geological disaster. In this paper, a 66km2 region in Yingxiu near the epicenter of the 2008 MS8.0 Wenchuan earthquake, which was strongly disturbed by the earthquake, was investigated. Firstly, one high-resolution satellite image before the earthquake(April, 2005) and five high-resolution satellite images after the earthquake(June, 2008; April, 2011; April, 2013; May, 2015; May, 2017)were used to interpret and catalog multi-temporal landslide inventories. Secondly, seven primary factors were analyzed in the GIS platform, including elevation, slope, aspect, curvature, stratum, lithology, and the distance from the nearest water system and the distance from seismogenic faults. Finally, the evolution of the landslide triggered by earthquake in this region was analyzed by comparing the landslide activity intensity in different periods, using the methods of correlation analysis, regression analysis, and single-factor statistical analysis. It was found that the total area of landslides in the study region decreased sharply from 2008 to 2017, with the area of the co-seismic landslide reducing from 21.41km2 to 1.33km2. This indicates that the magnitude of the landslides has recovered or is close to the pre-earthquake level. Moreover, correlation analysis shows that the elevation has a strong positive correlation with the distance from the nearest water system, and a weak positive correlation with the area. Meanwhile, there is a weak negative correlation between the distance from the nearest water system and the distance from seismogenic faults. Overall, the degree of landslide activity in the study region decreased over time, as well as the number of reactivated landslides and new landslides. The region where the area of earthquake triggered landslides decreased mainly concentrated at an elevation of 1 000m to 2 100m, a slope of 30° to 55°, an aspect of 40° to 180°, and a curvature of -2 to 2. In addition, the lithology of the Pengguan complex in the Yingxiu study region is more conducive to the occurrence of landslides, while the sedimentary rock is more conducive to the landslide recovery. When the distance from the nearest water system is more than 1 600m, the effect of the water system on the landslides gradually decreases. Also, the landslides triggered by Wenchuan earthquake in this area have the characteristics of the hanging wall effect, which means, the number of landslides in the northwestern region is much higher than that in the southeast side.  相似文献   

15.
越来越多的地震滑坡相对于地震断层的不对称分布震例让人们意识到断层上盘效应的存在。 然而,目前有关断裂运动方式与滑坡空间分布关系的研究还不够充分和深入。在收集大量地震滑坡震例资料并获得其分布规律的基础上,建立了一个简化的断层模型,以地震波在地表与断层面之间反射传播特性为基础,探讨断层倾角改变对地表地震动强度的影响。进而,以汶川地震触发的大型滑坡为例,研究了断层的几何特征和运动方式对诱发滑坡空间分布的影响。结果表明,断层的倾角对滑坡空间分布范围具有控制作用,随着倾角的增加,垂直断层走向的滑坡分布范围逐渐减小;并且,大型滑坡的初始坡面受到断裂运动方向的影响,与断裂运动方向一致的坡面更容易发生滑坡。所获结果不仅有助于提高区域性地震滑坡危险区域的预测精度,而且对认识大型滑坡的滑动机制、主控因素以及可能的滑动规模、滑距等也起到促进作用。通过对滑坡崩塌的认识来辅助提高对地质构造、地震断层等的认识,应是地震诱发滑坡崩塌研究的新的意义所在。  相似文献   

16.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

17.
In this study, a detailed database of landslides triggered by the 25 April 2015 Gorkha (Nepal)MW7.8 earthquake is constructed based on visual interpretation of pre- and post-earthquake high-resolution satellite images and field reconnaissance. Results show the earthquake triggered at least 47 200 landslides, which have a NWW direction spatial distribution, similar with the location and strike of the seismogenic fault. The landslides are of a total area about 110km2 and an oval distribution area about 35 700km2. On the basis of a scale relationship between landslide area (A)and volume (V), V=1.314 7×A1.208 5, the total volume of the coseismic landslides is estimated to be about 9.64×108m3. In the oval landslide distribution area, the landslide number density, area density, and volume density were calculated and the results are 1.32km-2, 0.31%, and 0.027m, respectively. This study provides a detailed and objective inventory of landslides triggered by the Gorkha earthquake, which provides very important and essential basic data for study of mechanics of coseismic landslides, spatial pattern, distribution law, and hazard assessment. In addition, the landslide database related to an individual earthquake also provides an important earthquake case in a subduction zone for studying landslides related to multiple earthquakes from a global perspective.  相似文献   

18.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

19.
The Hongtong earthquake occurring on 25 September 1303 in both Linfen Basin (LFB)and Taiyuan Basin (TYB)in Shanxi Graben is the first M8.0 earthquake based on the Chinese literature in China mainland, 392 years later, the Linfen M7.5 earthquake occurred on 18 May 1695 in Linfen Basin with its macro-epicenter distance of only 40km south of the Hongtong earthquake. Due to their close macro-epicenter distance and shortly interval of 392a, it attracted continuous attention to the geoscientists around Southern Shanxi Graben, southeastern Orods Plate. This paper combines the historical documents and interpreting the coseismic triggered disasters in study area. The results show that:1)the number of building damaged in the southern TYB and Lingshi Uplift (LSU)during 1303 Hongtong earthquake is similar to that of the LFB, indicating that the TYB and LSU maybe suffered the same or even worse earthquake disaster losses during the 1303 Hongtong earthquake. While the 1695 Linfen earthquake is confined within the LFB and south of Hongtong County; 2)More than 11 000 loess landslides were triggered by the 1303 Hongtong earthquake event between LFB and TYB, which is consistent with the literature records. We suggested the macro-epicenter of the 1303 Hongtong earthquake should move about 60km northward from the present location (36.3°N, 111.7°E)near Hongtong County to the new location (36.8°N, 111.7°E) between Huozhou City and Lingshi County, the new macro-epicenter location can reasonably explain the large-scale centralized earthquake-triggered landslides during the event. The landslides had aggravated the severity of the loss; 3)Our result helps to understand the spatial distribution of the two strong earthquakes and the relationship between them, especially the distribution map of earthquake-induced loess landslides by 1303 Hongtong earthquake extracted using the Google Earth images, which supports the amendment of the macro-epicenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号