首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The M_S7. 3 earthquake occurred in Yutian,Xinjiang on February 12,2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence,which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response,propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms,on the basis of the Brune model,the source parameters of the 102 M_L≥3. 0 Yutian earthquake sequence,seismic moment,apparent stress and corner frequency. The results show that,seismic moment of the earthquake sequence is between 3. 46 × 10~11- 2. 08 × 10~15N·m,apparent stress is between1. 48 × 10~5- 1. 16 × 10~6 Pa,mean stress level is 0. 31 MPa,and corner frequency is between1. 4- 7. 1Hz in the range of 3. 0- 5. 0. By analyzing the apparent stress and corner frequency variation with time,we obtain that apparent stress of earthquakes before the Yutian M_S7. 3 earthquake was significantly higher than the aftershock sequence,but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress,and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress,after the M_S7. 3 earthquake,the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.  相似文献   

2.
In view of the correlation between tectonic activity and seismicity, the strong earthquake risk in the North-South Seismic Belt aroused wide concern after the 2014 Yutian Ms7. 3 earthquake. Using the seismic catalog of the China Earthquake Networks Center, the Benioff strain ratio in the North-South Seismic Belt is calculated in 30 days before and after the March 21, 2008 and February 12, 2014 Yutian Ms7. 3 earthquakes. Results show that in a year after the 2008 Yutian Ms7. 3 earthquake, M 〉 5. 0 earthquakes all occurred near the high strain ratio area or the junction between the low and high strain ratio areas, the activity of strong earthquakes obviously coincides with the high strain ratio area, which indicates that these areas have a higher stress level. The Yutian earthquakes promoted the release of small earthquakes in the high stress areas. This research is of certain indicating significance to the study of subsequent strong earthquakes of this region.  相似文献   

3.
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.  相似文献   

4.
The reason for the failure to forecast the Wenchuan M_S8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass M_S8.1 earthquake and the 2008 Wenchuan M_S8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a M_S8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of M_S7.0 earthquake and an obvious quietude of M_S5.0 and M_S6.0 earthquakes during 2002~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning’er M_S6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with M_S≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.  相似文献   

5.
汶川8.0级地震前龙门山断裂带能量场变化   总被引:1,自引:0,他引:1  
During the process of preparation and occurrence of a large earthquake,the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus,in this paper,the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan M_S 8. 0 earthquake,2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake,probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake,the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.  相似文献   

6.
This paper introduces the geological structure background around the 2014 Yutian Ms7. 3 earthquake area, investigates and analyzes the regime of small earthquake activity and the characteristics of regional seismicity pattern in Xinjiang before the earthquake, and compares the characteristics of the regional seismic activity with the 2008 Yutian Ms7.3 earthquake. The results show: ① 2 ~ 3 years before the 2014 Yutian Ms7. 3 earthquake, Xinjiang was in a seismic active state with strong earthquake occurring successively, and before the 2008 Ms 7. 3 earthquake, Xinjiang was in the quiet state of moderate-small earthquakes with M3. 0 ~ 4. 0. ② Before this Yutian Ms7. 3 earthquake, the regional seismic activity showed a short-term anomaly feature, that is, seismicity of M ≥ 5. 0 earthquakes significantly increased on the Altun seismic zone and in the source area three years before the Ms7.3 earthquake, while a five year long quiescence of seismicity of M ≥4. 0 earthquakes appeared on the east of the source area in a range of about 440kin. Six months before this M7. 3 earthquake, there existed seismic gap of M3. 0 ~ 4. 0 earthquakes and near-conjugate seismic belt magnitude 3. 0 and 4. 0 in the source area. ③ The state of strong earthquake activity and the seismicity pattern of small earthquakes before this Yutian Ms7. 3 earthquake were significantly different to that before the 2008 Yutian Ms7. 3 earthquake, and this may be related to the different seismogenic environments of the two Ms7. 3 earthquakes.  相似文献   

7.
A M S 6.8 earthquake occurred on October 5,2008 in the Wuqia region in Xinjiang.The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic,7km southwest of the Wuqia Yierkeshitan Port in Xinjiang.The epicenter intensity is Ⅷ degrees (outside borders).The areas of intensity Ⅶ and Ⅵ are 7354km 2 and 1031km 2,respectively.This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt.Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake,accompanied with some phenomena of geological disaster.  相似文献   

8.
Yuan  Zhaode  Liu-Zeng  Jing  Zhou  You  Li  Zhigang  Wang  Heng  Yao  Wenqian  Han  Longfei 《中国科学:地球科学(英文版)》2020,63(1):93-107
The Altyn Tagh fault is one of the few great active strike-slip faults in the world. The recurrence characteristics of paleoearthquakes on this fault are still poorly understood due to the lack of paleoseismic records recorded in high-resolution strata. We document a paleoseismic record in a pull-apart basin along the Wuzunxiaoer section of the central Altyn Tagh fault.The high-resolution strata recorded abundant seismic deformations and their sedimentary responses. Four earthquakes are identified based on event evidence in the form of open fissures, thickened strata, angular unconformities, and folds. The occurrence times of the four events were constrained using radiocarbon dating. Event W1 occurred at AD1220–1773, events W2 and W3 occurred between 407 and 215 BC, and event W4 occurred slightly earlier at 1608–1462 BC, indicating clustered recurrence characteristics. A comparison of the earthquake records along the Wuzunxiaoer section with other records along the Xorkoli section suggests that both sections ruptured during the most recent event.  相似文献   

9.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

10.
This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of the plateau and the relationship between this change and the 2013 Lushan Ms7.0 earthquake. Our results show that: (1) before the Lushan MsT.0 earthquake, gravity anomalies along the eastern margin of the Tibetan Plateau changed drastically. The Lushan earthquake occurred at the bend of the high gradient zone of gravity var- iation along the southern edge of the Longmenshan fault zone. (2) The 2013 Lushan earthquake occurred less than 100 km away from the epicenter of the 2008 Wenchuan earthquake. Lushan and Wenchuan are located at the center of a four- quadrant section with different gravity anomalies, which may suggest that restoration after the Wenchuan earthquake may have played a role in causing the Lushan earthquake. (3) A medium-term prediction based on changes in gravity anoma- lies was made before the Lushan Ms7.0 earthquake, in par- ticular, a prediction of epicenter location.  相似文献   

11.
《震灾防御技术》2007,2(2):218-219
中国地震局地震预测研究所为中国地震局直属研究所,是国家级社会公益性科研机构。中国地震局地震预测研究所主要科研方向是:开展震源环境、地震过程和震源破裂机理等地震科学的基础研究;以地震预测试验场为基地,开展地震数值预测理论与方法研究;开展地震前兆机理研究;开展对构造活动、地震过程的观测方法研究,发展流动观测技术,开展防震减灾类观测专用设备的研制工作;承担地震中期和长期预报、地震预报攻关研究、地震现场流动观测任务;承担中国地壳运动观测网络数据中心管理、数据分析处理和数据服务工作。  相似文献   

12.
2010年青海玉树地震及震后青藏高原强震趋势分析   总被引:2,自引:0,他引:2  
2010年4月14日青海玉树发生7.1级地震,这是该区历史上发生的最为强烈的地震。该地震属走滑型,地处青藏高原巴颜喀拉地块南边界,发震断裂为甘孜—玉树—风火山左旋走滑断裂,地震破裂主要向震中东南方向。该地震是巴颜喀拉地块与羌塘地块以不同速率向东运动,地块间的差异运动使其边界应力积累到一定程度引发破裂的结果。根据地震定标律估算的主震断层破裂参数和应力参数为:地震矩M0=1.78×1019N.m,矩震级MW=6.8,断层破裂面积S=468km2,断层错距D=1.4m,断层破裂长度L=37km,断层破裂宽度W=12.6km,剪应力τ0=16.8MPa,应力降Δσ=7.03MPa。历史地震分析表明,玉树7.1级地震是在世界8级以上地震、中国西部大三角7.8级以上地震、南北地震带7级以上地震和巴颜喀拉块体7级以上地震处于强烈活动背景下发生的。玉树地震后,青藏高原巴颜喀拉地块、羌塘地块及川滇菱形块体未来发生7级以上地震的危险性较大。  相似文献   

13.
甘肃省民乐6.1级地震短期预报的简要回顾与启示   总被引:1,自引:0,他引:1  
2003年10月25日,甘肃民乐—山丹交界发生了Ms6.1地震。震前,在中国地震局监测预报司和分析预报中心的领导和指导下,甘肃省地震局于9月20日提出了祁连山中东段地区短期内可能发生6级左右地震的预报意见,并采取了多种短临跟踪措施。  相似文献   

14.
山西高平地震   总被引:1,自引:1,他引:1  
阐述了发生在山西高平的地震和对高平有影响的地震,分析了高平市的地震灾害,通过分析得出高平地震与晋获断裂带活动有关的结论。  相似文献   

15.
日本兵库县南部地震灾害及其启示   总被引:1,自引:0,他引:1  
本文叙述了日本兵库县南部地震的灾害特点,分析了灾害严重的原因及地震灾害以对政治、社会、经济、科学研究的影响,总结了应汲取的经验和教训。  相似文献   

16.
1976年4月6日内蒙古和林格尔6.3级地震是华北北部地区1次重要的地震,该地震前出现了明显的地震空段异常。介绍了该地震空段的时空特征,分析了地震空段的形成至解体与中强地震成组活动的关系。认为,地震空段可作为华北北部地区中强地震预测的中期判据,这对该地区地震预测有帮助意义。  相似文献   

17.
在汶川地震序列的动态跟踪与甘肃震情的动态判定过程中,本文作者成功地把握了甘肃震情、一定程度上把握了汶川地震序列的动态发展变化,并对5月18日四川江油发生的6.0级地震作出了成功预测。这一预测实践使本文作者更加深刻地感悟到,地震预报虽然是一个十分复杂的没有被攻克的世界性难题,但对于一个特定的地区,如果预报思路和方法得当,要实现一次乃至数次成功的预报是可能的。这对地球科学家们如何认识地震预报问题有一定的意义。  相似文献   

18.
Seismic strain and b value are used to quantify seismic potential in the Zagros region (Iran). Small b values (0.69 and 0.69) are related to large seismic moment rates (9.96×1017 and 4.12×1017) in southern zones of the Zagros, indicating more frequent large earthquakes. Medium to large b values (0.72 and 0.92) are related to small seismic moment rates (2.94×1016 and 6.80×1016) in middle zones of the Zagros, indicating less frequent large earthquakes. Small b value (0.64) is related to medium seismic moment rate (1.38×1017) in middle to northern zone of the Zagros, indicating frequent large earthquakes. Large b value (0.87) is related to large seismic moment rate (2.29×1017) in northwestern zone, indicating more frequent large earthquakes. Recurrence intervals of large earthquakes (M > 6) are short in southern (10 and 14 years) and northwestern (13 years) zones, while the recurrence intervals are long in the middle (46 and 114 years) and middle to northern (25 years) zones.  相似文献   

19.
Earthquake activity in the Aswan region,Egypt   总被引:3,自引:0,他引:3  
The November 14, 1981 Aswan earthquake (M L= 5.7), which was related to the impoundment of Lake Aswan, was followed by an extended sequence of earthquakes, and is investigated in this study. Earthquake data from June 1982 to late 1991, collected from the Aswan network, are classified into two sets on the basis of focal depth (i.e., shallow, or deeper than 10 km). It is determined that (a) shallow seismicity is characterized by swarm activity, whereas deep seismicity is characterized by a foreshock-main shock-aftershock sequence; (b) the b value is equal to 0.77 and 0.99 for the shallow and deep sequences, respectively; and (c) observations clearly indicate that the temporal variations of shallow seismic activity were associated with a high rate of water-level fluctuation in Lake Aswan; a correlation with the deeper earthquake sequence, however, is not evident. These features, as well as the tomographic characteristics of the Aswan region (Awad andMizoue, this issue), imply that the Aswan seismic activity must be regarded as consisting of two distinct earthquake groups.We also relocated the largest 500 earthquakes to determine their seismotectonic characteristics. The results reveal that the epicenters are well distributed along four fault segments, which constitute a conjugate pattern in the region. Moreover, fault-plane solutions are determined for several earthquakes selected from each segment, which, along with the 14 November 1981 main shock, demonstrate a prominent E-W compressional stress.  相似文献   

20.
2009年4月6日意大利拉奎拉地震的前震及其预测意义   总被引:1,自引:0,他引:1  
本文通过分析2009年1月1日~4月5日意大利及周边地区中小地震的时空分布特征发现,2009年4月6日意大利拉奎拉地震是一次具有明显前震的中强地震.震前中小地震从频度和强度上在时间和空间向未来震中聚集的现象,为探索利用前震序列进行地震预测提供了较好的研究案例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号