首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

2.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

3.
Chronology and geochemistry of the Shangyu gabbro-diorite in western Shandong were studied to understand their petrogenesis and the nature of the Mesozoic lithospheric mantle. The Shangyu intru-sion is mainly composed of a suite of gabbro-diorite. Zircons from the intrusion display eu-hedral-subhedral in shape and have high Th/U ratios (1.23―2.87), implying their magmatic origin. LA-ICP-MS zircon U-Pb dating results for two samples indicate that they were formed in the Early Cre-taceous, yielding weighted mean 206Pb/238U ages of 129±1Ma and 134±2Ma, respectively. Except for early cumulate such as sample QT-19, their SiO2 and MgO contents range from 50.12% to 56.37% and from 3.52% to 6.37%, respectively. Moreover, the gabbro-diorites are characterized by high Mg# (0.54―0.63), enrichment in Na (Na2O/K2O ratios more than 1), Cr (73×10-6―217×10-6) and Ni (34×10-6―241×10-6), and intensive enrichments in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). Their initial 87Sr/86Sr ratios and ε Nd(t) values range from 0.70962 to 0.71081 and from-16.60 to-13.04, respectively. Taken together with the Early Creta-ceous high-Mg diorites and the mantle xenoliths from the Tietonggou and Jinling as well as basalts from the Fangcheng and Feixian, it is suggested that the primary magma for the Shangyu gab-bro-diorites should be derived from the enriched lithospheric mantle intensively modified by conti-nental crust. The Sr-Nd-Pb isotopic compositions for the Early Cretaceous high-Mg diorites in western Shandong display a trend of spatial variations, i.e., initial 87Sr/86Sr, 207Pb/204Pb and 208Pb/204Pb ratios de-creasing and ε Nd(t) values increasing from southeast to northwest in western Shandong, which is con-sistent with the tectonic model that the Yangtze Craton subducted beneath the North China Craton oriented in north-west direction in the Early Mesozoic.  相似文献   

4.
Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-hornblende gabbro body is situated at the northeast part of the ba- tholith. Both the granitic batholith main body and the diorite-hornblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%―55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871―0.71570) and low εNd(t) values (?5.11―?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37―1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-hornblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256―0.71318) and low εNd(t) values (?7.32―?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.  相似文献   

5.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

6.
It is well known that the destruction of the North China Carton(NCC) is closely related to subduction of the PaleoPacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs(such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs(such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ~(18)O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon ε_(Hf)(t) values up to +5.2 and heavy zircon O isotopic compositions with δ~(18)O values of +8.1‰ to +9.0‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.  相似文献   

7.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

8.
The Hf isotope composition of original igneous or detrital zircons in high-grade metamorphic rocks can be used to trace protolith origin, but metamorphic effect on the Hf isotope composition of newly grown domains remains to evaluate. We report a detailed in situ combined study of intragrain U-Pb and Lu-Hf isotopes in zircons from granitic gneiss and eclogite in the Dabie orogen of China that experienced ultrahigh-pressure eclogite-facies metamorphism. The results show correlations in 206Pb / 238U age, initial Hf isotope composition, and Th / U and Lu / Hf ratios between the domains of different origins. The metamorphic domains are characterized by low Th / U and Lu / Hf ratios but high ?Hf(t) values relative to the igneous core and mantle of pre-metamorphic ages. Positive correlations are observed between Th / U and Lu / Hf ratios, pointing to the similar effect of metamorphism on both U-Th-Pb and Lu-Hf isotope systems. Thus the metamorphic domains are distinguished from the igneous core and mantle by their low Lu / Hf ratios that are less than 0.001 for the granitic gneiss and less than 0.0001 for the eclogite. Despite differences in both protolith age and geochemical source between granitic gneiss and eclogite, rim ?Hf(t) values are variably 3.1 to 13.5 greater than core ?Hf(t) values when calculated at timing of protolith formation. This indicates that the zircon overgrowth was associated with a metamorphic medium that has high 176Hf / 177Hf but low 176Lu / 177Hf ratios. While the metamorphic domains contain more radiogenic Hf isotopes than the original igneous core and mantle, their Lu / Hf ratios are significantly lower than those of core and mantle. Therefore, the metamorphic zircons acquired their initial Hf isotope ratios from metamorphic fluids that have high 176Hf / 177Hf ratios but low Lu / Hf ratios with sound variability depending on the Lu-Hf isotope compositions of pre-existing and co-precipitating phases.  相似文献   

9.
We report here geochemical data, U-Pb zircon ages, and Hf isotopes for the high-Mg diorites (HMDs), Nb-enriched basaltic porphyrys (NEBPs) and plagiogranites (PLAGs) in the Pingshui segment of the Jiangshan-Shaoxing suture zone. The HMDs are characterized by high Mg# (>60), high Na and LREE contents, depletion of HREE and HFSE, and pronounced positive εNd(t) values of 7.0 to 7.7, similar to some adakitic high-Mg andesites. The NEBPs are relatively Na-rich (Na2O/K2O>6) and display high abundances of P2O5 (∼1.00%), TiO2 (∼3.08%) and HFSE (e.g., Nb=9.53–10.27 ppm). Their Nd isotopic compositions (εNd(t)=6.8–8.0) are comparable to those of the HMDs. The PLAGs are metaluminous (A/CNK=0.84–0.89) and sodic (Na2O/K2O>10). Their depletion in HFSE (e.g., Nb, Ta) is consistent with “SSZ-type” plagiogranite. Zircon LA-ICP-MS U-Pb dating yields an age of 932±7 Ma for the HMD, 916±6 Ma for the NEBP, and 902±5 Ma for the PLAG, respectively, indicating that they were products of early Neoproterozoic magmatism. The PLAGs exhibit relatively high zircon Hf isotopes and positive εHf(t) values of 11.0 to 16.2, consistent with their Nd isotopic data (εNd(t)=7.5–8.4). Such features are similar to those of oceanic plagiogranites in ophiolites and distinct from those of crust-derived granites. The PLAGs were most likely derived from partial melting of subducted oceanic crust in an active continental margin. Considering these results in the context of the regional geology, we suggest that a slab window in the subducting oceanic crust between the Yangtze Block and Cathaysia Block was possibly the principal cause for the unique arc magmatism in the area. The upwelling asthenosphere below the slab window may have provided significant thermodynamic conditions. Supported by China Geological Survey (Grant No. 1212010610611) and the Ministry of Land and Resources (Grant No. 200811015)  相似文献   

10.
Hf isotope measurement has been carried out for UHP metamorphic eclogite from Xindian by using LA-MC-ICP-MS technique. The result indicates that metamorphic growth zircon has high 176Hf/177Hf (0.282544―0.282612) and low 176Lu/177Hf (0.000004―0.000211) ratio,inherited and recrystallized proto-lith zircon has low 176Hf/177Hf (0.282266―0.282466) and high 176Lu/177Hf (0.000090―0.002144) composi-tions. The low 176Lu/177Hf of growth zircon comes from its decreasing of Lu and increasing of Hf during UHP process. The high 176Hf/177Hf deduced from high radiogenic 176Hf,which was produced from long-term evolution of high Lu/Hf ratio minerals. Partial recrystallization of protolith zircon would not cause reworking of Lu/Hf isotope in zircon. Compared to U-Pb,zircon Lu-Hf system has better stability. The initial Hf isotope composition of metamorphic growth zircon may represent the Hf isotope compo-sition of whole rock system at the same time. The initial εHf of 3.0 for metamorphic precursor formation of Xindian eclogite indicates that the source material mainly derived from weak depleted mantle or mixing of depleted mantle with old crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号