首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
Effects of new antifouling compounds on the development of sea urchin   总被引:5,自引:0,他引:5  
Tributyltin oxide (TBTO) has been used worldwide in marine antifouling paints as a biocide for some time. However, it produced toxic effects, especially in marine water/sediment ecosystems. Consequently, its use in antifouling paints has been prohibited in many countries. In this study, the toxicity of alternative and/or new antifouling biocides compared with TBTO is assessed by a biological method. The effects of these chemicals on marine species have not been well studied. This paper assesses, comparatively, the effects of eight biocides on sea urchin eggs and embryos. The chemicals assessed were TBTO, Irgarol 1051, M1 (the persistent degradation product of Irgarol), Diuron, zinc pyrithione, 'KH101', 'Sea-Nine 211', and copper pyrithione. For these chemicals, toxicity appears to be in the order zinc pyrithione > Sea-Nine 211 > KH101 > copper pyrithione > TBTO > Diuron approximately = Irgarol 1051 > M1. Here, we show that zinc pyrithione, Sea-Nine 211, KH101, and copper pyrithione are much more toxic to sea urchins than TBTO or the other chemicals.  相似文献   

2.
The presence of booster biocides in the aquatic environment has been associated with a risk to non-target species due to their proven toxicity. The aim of the present study was to determine the spatial and temporal distribution of common booster biocides in different harbours of the island of Gran Canaria (Spain) and evaluate, by means of a probabilistic risk assessment (PRA), the ecological risk posed by these compounds. With these objectives, a monitoring campaign was conducted between January 2008 and May 2009, collecting a total of 182 seawater samples. Four common booster biocides (TCMTB, diuron, Irgarol 1051 and dichlofluanid) were monitored. Diuron levels ranged between 2.3 and 203 ng/L and Irgarol 1051 between 2.4 and 146.5 ng/L. The ecological risk associated with these levels was always low, however, with probabilities of exceeding the 10th percentile of autotroph toxicity below 3.5%.  相似文献   

3.
In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.  相似文献   

4.
In 2001, legislative measures were introduced in the UK to restrict usage of antifouling agents in small (<25 m) vessel paints to dichlofluanid, zinc pyrithione and zineb. This removed the previously popular booster biocides diuron and Irgarol 1051 from the market. To investigate the impact of this legislation, water samples were taken from locations where previous biocide levels were well documented. Results from analyses demonstrate a clear reduction in water concentrations of Irgarol 1051 (between 10% and 55% of that found during pre-restriction studies), indicating that legislation appears to have been effective. Although other booster biocides were screened for (chlorothalonil, dichlofluanid and Sea-Nine 211), they were below the limits of detection (<1 ng/l) in all samples. A survey of chandlers and discussions with legislative authorities supports these results and concurs the removal of Irgarol 1051 based paints from the market using simple regulations at a manufacturer level with little regulation at a retailer level.  相似文献   

5.
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 microug L(-1) Irgarol vs. > 200 microg L(-1) M1; S. costatum, 0.29 microg L(-1) Irgarol vs. 11.32 microg L(-1)M1; and T. pseudonana, 0.41 microg L(-1) Irgarol vs. 16.50 microg L(-1)M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

6.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   

7.
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter lambda>1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.  相似文献   

8.
《Marine pollution bulletin》2009,58(6-12):616-623
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter λ > 1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.  相似文献   

9.
《Marine pollution bulletin》2009,58(6-12):575-586
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 μg L−1 Irgarol vs. >200 μg L−1 M1; S. costatum, 0.29 μg L−1 Irgarol vs. 11.32 μg L−1 M1; and T. pseudonana, 0.41 μg L−1 Irgarol vs. 16.50 μg L−1 M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

10.
The degradability of two antifouling biocides: zinc pyrithione (ZPT) and copper pyrithione (CPT) in seawater was examined. Reduction in toxicity due to degradation was monitored over two days using a bioassay with natural assemblages of coastal marine bacteria from Roskilde Fjord, Denmark. To investigate photo-degradation of the compounds, bacteria were exposed to sterile ZPT- and CPT-dilution that had either been exposed to sunlight or darkness. Bio-degradation was examined by diluting ZPT and CPT in sterile seawater or natural seawater. Photo-degradation half-life for ZPT was estimated to be 8.3+/-0.9 min and for CPT to 7.1+/-0.2 min. Total and microbial degradation in combination with photo-degradation did not further shorten the degradation time, suggesting no bio-degradation. Bio-degradation without the influence of sunlight was also negligible over the time-period investigated. ZPT and CPT are therefore suggested to persist in the marine environment where the influence of the light is limited.  相似文献   

11.
The International Maritime Organisation's (IMO) ban on the use of tributyltin in antifouling paints has inevitability increased the use of old fashioned antifoulants and/or the development of new paints containing 'booster biocides'. These newer paints are intended to be environmentally less harmful, however the broader environmental effects of these 'booster biocides' are poorly known. Germination and growth inhibition tests using the marine macroalga, Hormosira banksii (Turner) Desicaine were conducted to evaluate the toxicity of four new antifouling biocides in relation to tributyltin-oxide (TBTO). Each of the biocides significantly inhibited germination and growth of Hormosira banksii spores. Toxicity was in increasing order: diuron < zineb < seanine 211< zinc pyrithione < TBTO. However, the lack of knowledge on partitioning in the environment makes it difficult to make a full assessment on whether the four biocides tested offer an advantage over organotin paints in terms of environmental impact.  相似文献   

12.
Biofouling increases drag on marine vessels resulting in higher fuel consumption and can also facilitate the transport of harmful non-indigenous species (NIS). Antifouling technologies incorporating biocides (e.g., copper and tributyltin) have been developed to prevent settlement of organisms on vessels, but their widespread use has introduced high levels of contamination into the environment and raised concerns about their toxic effects on marine communities. The recent global ban on tributyltin (1 January 2008) and increasing regulation of copper have prompted research and development of non-toxic paints. This review synthesises existing information regarding the ecological impact of biocides in a wide range of organisms and highlights directions for the management of antifouling paints. We focus particularly on representatives of the recent past (copper and tributyltin) and present (copper and ‘booster’) biocides. We identify knowledge gaps in antifouling research and provide recommendations relating to the regulation and phasing-out of copper.  相似文献   

13.
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 × 3 × 4 factorial design (i.e. two temperatures: 25 and 35 °C; three salinities: 15.0‰, 34.5‰ and 45.0‰; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 μg l−1 respectively (at 25 °C; 34.5‰) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using ‘concentration’ as the covariate and both ‘temperature’ and ‘salinity’ as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.  相似文献   

14.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   

15.
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 × 3 × 4 factorial design (i.e. two temperatures: 25 and 35 °C; three salinities: 15.0‰, 34.5‰ and 45.0‰; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 μg l−1 respectively (at 25 °C; 34.5‰) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using ‘concentration’ as the covariate and both ‘temperature’ and ‘salinity’ as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.  相似文献   

16.
Organotin (OT) compounds have been used as biocide agents in antifouling paints since the mid 1960s and are now ubiquitous in the marine environment. Due to their high toxicity to non-target species they were banned from antifouling paints in the European Union in 2003 (2002/62/EC directive). The aim of the present work is to assess any obvious decline of the OT environmental levels at Ria de Aveiro (NW Portugal) after the ban. The organotins - monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPT), diphenyltin (DPT), triphenyltin (TPT), monoctyltin (MOT), dioctyltin (DOT) and trioctyltin (TOT) - were quantified in the gastropod Nassarius reticulatus, in the mussel Mytilus galloprovincialis and in sediments. Imposex (imposition of male characters on females of gonochorist gastropods) in N. reticulatus was additionally used as a biomarker of TBT pollution. Time comparisons show a slight decrease of imposex between 2003 and 2005 probably as a consequence of the EU ban, though in some cases this trend seems to have started earlier since 2000. The fraction of TBT relatively to its metabolites has been decreasing over the last years but still remains high suggesting that there are still recent inputs of this compound into the study area.  相似文献   

17.
TBT toxicity on the marine microalga Nannochloropsis oculata   总被引:1,自引:0,他引:1  
Commercial antifouling formulations containing TBT are the major source of organotin contamination in coastal waters. In view of the persisting TBT residues (13 ng Sn l−1) in the coastal waters of South Korea, an attempt has been made to evaluate the growth response and biochemical composition of laboratory-cultured Nannochloropsis oculata to TBT toxicity. It is evident that the persisting concentration level of TBT is high enough to cause adverse effect on the microalgal species. The EC50 (24 h) was found to be at 0.89 nM level of TBT for this marine eustigmatophyte N. oculata. Photosynthetic pigment content was significantly affected. At elevated TBT concentrations of 1.0 nM, especially pronounced changes in biochemical composition was found. TBT tolerance of N. oculata and its growth as well as biochemical responses are discussed.  相似文献   

18.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

19.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   

20.
Commercial antifouling formulations containing TBT are the major source of organotin contamination in coastal waters. In view of the persisting TBT residues (13 ng Sn l−1) in the coastal waters of South Korea, an attempt has been made to evaluate the growth response and biochemical composition of laboratory-cultured Nannochloropsis oculata to TBT toxicity. It is evident that the persisting concentration level of TBT is high enough to cause adverse effect on the microalgal species. The EC50 (24 h) was found to be at 0.89 nM level of TBT for this marine eustigmatophyte N. oculata. Photosynthetic pigment content was significantly affected. At elevated TBT concentrations of 1.0 nM, especially pronounced changes in biochemical composition was found. TBT tolerance of N. oculata and its growth as well as biochemical responses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号