首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

2.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

3.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the East-Central Iran has been used to estimate simultaneously source parameters, site response and the S-wave attenuation (Qs). In this regard, 190 three-component records were used corresponded to 40 earthquakes with the magnitudes M3.5–M7.3. These earthquakes were recorded at 42 stations in the hypocentral distance range from 9 to 200 km. The inverse problem was solved in 20 logarithmically equally spaced points in the frequency band from 0.4 to 15 Hz. The frequency-dependent site amplification was imposed, as a constraint, on two reference site responses in order to remove the undetermined degree of freedom in the inversion and obtain a unique inverse solution. Also, a geometrical spreading factor was assumed for removing the trade-off between geometrical spreading and anelastic attenuation. Different source parameters, such as seismic moment (M0), seismic energy (Es), corner frequency (fc) and Brune stress drop (Δσ), were estimated for each event by fitting an ω2 model to the spectra obtained from the inversion. The stress drop values of earthquakes, obtained in this research, are in good agreement with those of other studies. Also average site response values were correlated to the average shear wave velocities in the uppermost 30 m, in high and low frequency bands. The peak frequencies of site amplifications, estimated by the generalized inversion method, where in good agreement with those of horizontal to vertical (H/V) spectral ratios for the S-wave portion of records. However, no perfect matching in amplitude was obtained due to the deficiencies of the H/V ratio technique. By supposing a free shape for Q factor, a frequency dependent function was found, the logarithm of which could be approximated by a linear function, Q(f)=151f0.75. The uncertainties of model parameters have been evaluated by covariance matrix of least-square fit. The residuals were also analyzed in order to assess the validity of the model. The analysis of residuals with respect to magnitude and distance indicates that they are distributed normally with approximately zero mean. The robustness of the results has been studied concerning their sensitivities to the omission of different datasets, selected randomly from original database. The results obtained here can be used in predicting ground-motion parameters applying stochastic methods.  相似文献   

4.
The attenuation characteristics of Indian lithosphere and its comparison with different tectonic settings in the world are determined from the observations of the Q for Lg(QLg)-, and S(QS)-waves in the 1-30 Hz frequency range. The scattering is approximated with a Gaussian distribution of spherical scatterers. To approximate single scattering, we use Dainty's [Geophy. Res. Lett. 8 (11) (1981) 1126] model that attenuation is given by 1/Q(ω) = 1/Qi + g(ω)v/ω, where Qi is intrinsic Q due to anelastic attenuation, v is shear wave velocity, ω is angular frequency, g = ∫n(a)σ da is the total scattering coefficient for S-to-S scattering, n(a) da is the number of scattering spheres of radius a per unit volume, and σ is the scattering cross-section for the sphere. We find that if n(a) is described by a simple two parameter (a0 and c) Gaussian of amplitude c and standard deviation and mean a0, the attenuation data for different regions of the world are well approximated over the frequency band of seismic observations. Our major findings are: (1) the maximum effect of scattering on attenuation occurs at 0.84 Hz or a wavelength of 4.16 km; (2) the values of g are frequency dependent. Values of g are of the order of 10−3 km−1 at 1-30 Hz, varying from 0.0031 to 0.01 and 0.001 to 0.0083 km−1 for tectonically active and stable regions, respectively; (3) regions of active tectonics and seismicity generally have lower Qi values (1000) than that in stable regions (2000); and (4) regions of high Qi value exhibit low intensity of scattering.  相似文献   

5.
Long-range seismic sounding carried out during the last few years on the territory of the U.S.S.R. has shown a basic inhomogeneity of the uppermost mantle, as well as evidence of regularities in the distribution of its seismic parameters. The following data were used: times and apparent velocities of P- and S-waves for investigation of mantle velocities, converted waves for seismic discontinuity model studies and wave attenuation for Q-factor estimation. Strong regularities were distinguished in the distribution of average seismic velocities for the uppermost mantle, in their dependence on the age and type of geostructure and on their position relative to the central part of the continent. Old platforms and the inner part of the continent are marked by velocities under the Mohorovi?i? discontinuity of more than 8.2–8.3 km s?1, young platforms and outer parts of the continent by 8.0–8.2 km s?1, and orogenic and rift zones by 7.8–8.0 km s?1. The difference becomes more pronounced at a depth of about 100–200 km: for the old platform mantle velocities of 8.5–8.6 km s?1 are typical; beneath the orogenic and rift areas, inversion zones with velocities less than 7.8 km s?1 are observed.The converted waves show fine inhomogeneities of the crust and uppermost mantle, the presence of many discontinuities with positive and negative changes of velocity, and anisotropy of seismic waves in some of the layers. Wave attenuation allowed the determination of the Q-factor in the mantle. It varied from one region to another but a close relation between Q and P-wave velocity is the main cause of its variation.  相似文献   

6.
The large deep earthquake of January 21, 1906 is re-evaluated using old seismogram data and updated analysis techniques. From the P and pP-P time data the hypocentre parameters are determined as follows: origin time, 13h 49min 35s; latitude, 33.8°N; longitude, 137.5°E; depth, 340 km. The body-wave magnitude mB is re-evaluated from the amplitude and periods of P, PP and S waves. The average value of 7.4 is obtained. This value is the smallest among any values assigned previously to this shock, and it is denied that the earthquake is the world's largest deep shock in this century. The focal mechanism is estimated from the P-wave first motions and amplitude distribution of P and S waves. Synthetic body waves are used to constrain the mechanism and to determine the seismic moment. The mechanism solution suggests the down-dip compression typical of this region. A seismic moment of 1.5 × 1027 dyn · cm is obtained. This value and the re-evaluated value of mB are consistent with the moment-B relation obtained for other deep earthquakes.  相似文献   

7.
The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6 km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22 s for locations from the standard one-dimensional model to 0.13 s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6–5.0 km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20–25% slower than velocities outboard of the region (5.0–6.5 km/s). Moderately low velocities (4.5–6.0 km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10 km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0–5.7 km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5–6.5 km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1 km to depths of 0 to 4 km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to − 40 mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik–Katmai–Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes.  相似文献   

8.
The Vrancea seismogenic zone in Romania represents a peculiar source of seismic hazard, which is a major concern in Europe, especially to neighboring regions of Bulgaria, Serbia and Republic of Moldavia. Earthquakes in the Carpathian–Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 km occur. One of the cities most affected by earthquakes in Europe is Bucharest. Situated at 140–170 km distance from Vrancea epicenter zone, Bucharest encountered many damages due to high energy Vrancea intermediate-depth earthquakes; the March 4, 1977 event (Mw=7.2) produced the collapse of 36 buildings with 8–12 levels, while more than 150 old buildings were seriously damaged. A dedicated set of applications and a method to rapidly estimate magnitude in 4–5 s from detection of P wave in the epicenter were developed. They were tested on all recorded data. The magnitude error for 77.9% of total considered events is in the interval [−0.3, +0.3] magnitude units. This is acceptable taking into account that the magnitude is computed from only 3 stations in a 5 s time interval (1 s delay is caused by data packing). The ability to rapidly estimate the earthquake magnitude combined with powerful real-time software, as parts of an early warning system, allows us to send earthquake warning to Bucharest in real time, in about 5 s after detection in the epicenter. This allows 20–27 s warning time to automatically issue preventive actions at the warned facility.  相似文献   

9.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

10.
Empirical scaling equations for Fourier amplitude spectra of strong ground motion are used to describe A0 and τ in the assumed (high-frequency) shape of strong motion amplitudes: FS(φ) = A0e-πτφ. The res of computed A0 and τ with other related estimates of spectral amplitudes; (2) smooth decay of strong motion spectral amplitudes up to φ = 25 Hz, without an abrupt low-pass filtering of high frequecies; and (3) good agreement with other estimates of the regionally specific attenuation of high-frequncy seismic waves.As the recorded strong earthquake shaking in the western United States typically samples only the shallow (10 km) and local (100km) characteristics of wave attenuation, the processed strong motion accelerograms can be used as the most direct means of describing the nature of the high-frequency attenuation of the entire strong motion signal for use in earthquake engineering applications. Seismological body wave, Lg and coda wave estimates of Q sample different volumes of the crust surrounding the station, and involve different paths of the waves. These differences must be carefully documented and understood before the results can be used in earthquake engineering characterization of strong motion amplitudes.  相似文献   

11.
The characteristics of the attenuation field of short-period shear waves in the region of Nevada nuclear test site (NNTS) are studied. The seismograms of underground nuclear explosions (UNEs) and earthquakes recorded by three seismic stations in 1975–2012 at the epicentral distances of up to 1000 km are processed by the methods based on the analysis of the amplitude ratios of Sn to Pn and Lg to Pg waves, as well as the S-coda envelopes for close events. It is shown that the structure of the attenuation field in the Earth’s crust and upper mantle in the NNTS region experienced significant temporal variations during the interval of nuclear operations. The strongest variations were associated with UNEs conducted in the Pahute Mesa area, which held about two-thirds of the most intense explosions. Our data indicate that temporal variations in the structure of the attenuation field are related to the migration of deep fluids. A comparison of the general characteristics of the attenuation field in the regions of the three large nuclear test sites is presented.  相似文献   

12.
Hydrodynamic, suspension and bed-form measurements were made 2 km off the Dutch coast near Noordwijk aan Zee in ∼14 m water depth for a period of 32 days in 2003. Tidal currents were just able to suspend sand at the bed at peak spring tide but most suspension and transport occurred as a result of the combination of waves and currents. Burst-average (17 min) sand concentration profiles (-profiles) from an acoustic backscatter instrument were used to define the (varying) location of the sea-bed, following the method used by Green et al. [Green, M.O., Dolphin, T.J., Swales, A., Vincent, C.E., 1999. Transport of mixed-size sediments in a tidal channel. Coastal Sediments ‘99, edited by N.C. Kraus, and W.G. McDougal, ASCE, Long Island, New York, pp. 644–658]. Reference concentrations at the sea-bed (C0) and at 1 cm (C1) were examined in relation to both the hydrodynamic conditions and the type of bed forms present. The C0 predictive equations of Green and Black [Green, M.O., Black, K.P., Suspended sediment reference concentration under waves: field measurements and critical analysis of two predictive models, Coastal Engineering, 38, 115–141, 1999](short-wave ripples) and Nielsen [Nielsen, P., Suspended sediment concentrations under waves, Coastal Engineering, 10, 23–31, 1986](all bed forms; includes ripple steepness), both of which require knowledge of the bed-form type, were not as successful in explaining the variance in our C0 data as a regression of C0 against the skin-friction Shields parameter θcw that ignored bed-form type (73% of variance explained). The values of the reference concentration C1 were compared with the Lee et al. [Lee, G.-H., Dade, W.B., Friedrichs, C.T., Vincent, C.E., Examination of Reference Concentration Under Waves and Currents on the Inner Shelf., Journal of Geophysical Research, 109, 1–10, 2004] equation which predicts C1 from the product of the Shields parameter and the inverse Rouse parameter; 51% of the variance in C1 was explained.  相似文献   

13.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

14.
The seismic attenuation in the Vrancea region (Romania) is investigated from teleseismic recordings of P and pP waves during the four major, intermediate-depth Romanian events that occurred since the onset of digital instrumentation. Most stations are located in Canada and in the United States, being equipped with a variety of sensors, especially short-period ones. The amplitude spectral ratio method is used, assuming no frequency dependence of the Q P factor in the range 0.2–2 Hz. No apparent correlation between the derived attenuation value and the type of recording sensor is observed. Lateral variations of the attenuation are obtained, with a very low Q P area (values down to 33) located in the northwestern part of the Vrancea seismogenic volume. For the stations with different azimuth angles in relation to the epicentral area, Q P values routinely exceed 200. Most likely, the low attenuation values are related to an upwelling mantle material located immediately beneath the crust, but limited in depth to at least 100 km.  相似文献   

15.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

16.
Attenuation of seismic compression waves leads to the real existence of a fast P1 wave in rocks which are fully saturated with dropping fluid and a slow P2 wave in the rocks containing gas in their pores. This accounts for the seismic blanking zones below the gas horizons for the P1 waves. Oscillations of gaseous inclusions ensure the energy transfer to the dominant frequencies which are different for the cases of passive seismic (few Hz) and active source seismic (10–20 Hz). The intervals of dominant frequencies are determined from the negative attenuation of these low-frequency waves. According to the observations and the suggested equation, random noise amplifies the signal at these frequencies. Thus, the P2 waves at the dominant frequency of the active source seismics are applicable for elaborating on the details of the saturation of the production layer by hydrocarbons. The relation to the AVO method (Amplitude Variation with Offset) and dilatancy effect during the preparation of an earthquake is noted.  相似文献   

17.
Forced and free oscillations of water level were recorded in the YuZ-5 well, Kamchatka due to the passage of seismic waves from the Sumatra-Andaman earthquake of December 26, 2004, M w = 9.3, hypocentral distance 8250 km. The greatest amplitude of water level oscillations, at least 5 cm, was observed during the onset of seismic surface waves with a typical period of 20–50 s. The total duration of the forced and free water level oscillations was about ten hours. The available theoretical models that describe oscillations of water level in a well due to seismic waves and rapid injection of water were used to estimate the transmissivity of the aquifer. The values obtained exceed by at least two orders of magnitude the transmissivity derived from pumping test measurements. A hypothesis was proposed to explain the temporary increase in aquifer transmissivity during the passage of seismic waves by invoking disturbances in the structure of the crack-pore space and a sharp increase in aquifer rock permeability.  相似文献   

18.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

19.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

20.
We analyze the waveforms generated by the January 12, 2010 Haiti earthquake (Mw=7.0) for its source characteristics. A 60 to 25 km source model is retrieved by the Kikuchi and Kanamori finite source inversion technique that uses broadband teleseismic body wave records. The derived rupture model points out unilateral rupture propagation commenced at the eastern side of the fault plane where the major seismic moment release occurred. The rupture front propagated westward and terminated at a site where the largest aftershocks occurred. Our estimates yield a seismic moment of Mo=8.17×1019 N m released on a 60 km-long fault plane. A patch at the eastern side of the ruptured fault plane inferred as a region of maximum moment release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号