首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem services evaluation aims at understanding the status of ecosystem services on different spatial and temporal scale. In this paper, we selected the middle reach of the Heihe River Basin (HRB), which is the second largest inland river basin in China, as one of the typical area to estimate the ecosystem services values (ESVs) corresponding to the land use changes. Based on the land use data and ecosystem service value coefficients, the total ecosystem services values (TESVs) of the middle reach of the HBR are quantitatively calculated, which were 9.244 × 108, 9.099 × 108, 9.131 × 108 and 9.146 × 108 USD in 1988, 2000, 2005 and 2008 respectively. During 1988–2008, the decrease of grassland, forest land, water area and unused land contributed 148.94%, 57.85%, 87.87% and 16.42% respectively to the net loss of TESVs, while the dramatic increase of cultivated land improved the TESVs with contribution of −211.08% to the net loss of TESVs. Expansion of cultivated land, which especially caused the loss of grassland and forest land, directly exerted negative impacts on the provision of ecosystem services in the study area. The findings of this research indicated that land use change was an important form of human activities, which had a strong impact on ecosystem services.  相似文献   

2.
The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers’ income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer’s income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000–2005 and 2005–2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer’s income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers’ income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer’s income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal allocation of water resources in the Huang-Huai-Hai River Basin.  相似文献   

3.
Investigating the spatiotemporal dynamics of agricultural water status during crop growth season can provide scientific evidences for more efficient use of water resources and sustainable development of agricultural production under climate change. In this study, the following were used to evaluate the multidecadal changes in moisture condition during climatic growth period of crops in Northeast China from 1961 to 2010: (1) the daily climate variables gathered from 101 meteorological stations in Northeast China for 1961–2010; (2) FAO (Food and Agriculture Organization) Penman–Monteith equation; (3) 80% guaranteed probability for agro-climatic indicators; and (4) the daily average temperature stably passing 0 °C, which is the threshold temperature of climatic growth period for crops. Reference crop evapotranspiration (ET0) and relative moisture index were further calculated. The results showed that Northeast China’s climate in the main agricultural areas over the past 50 years was warmer and drier in general, with a growing range and intensity of drought. From 1961 to 2010, when the daily average temperature stably passed 0 °C, the average annual total precipitation (P) and ET0 with 80% guaranteed probability in Northeast China both emerged as decreasing trends with averages of 555.0 mm and 993.7 mm, respectively. However, the decline in P was greater than that of annual total ET0. As a result, the annual relative moisture indices sharply decreased with an average of −0.44, mostly fluctuating from −0.59 to −0.25. As far as spatial distributions were concerned, the inter-regional reductions in P and relative moisture index over the past 50 years were conspicuous, especially in some agricultural areas of central Heilongjiang Province, northeastern Jilin Province and northeastern Liaoning Province. On the contrary, ET0 obviously increased in some agricultural areas of central and northwestern Heilongjiang Province (eg. Qiqiha’er, Shuangyashan, Hegang, Suihua, etc.), and northeastern Jilin Province (eg. Baicheng). This indicated that drought existed and was unfavorable for crop growth and development, especially during the period of 2001–2010. This finding revealed that drought was still one of the most important agricultural meteorological disasters in Northeast China. Some countermeasures should be formulated to adapt to climate change. Our findings have important implications for improving climate change impact studies, for breeding scientists to breed higher yielding cultivars, and for agricultural production to cope with ongoing climate change.  相似文献   

4.
Human activities result in deforestation, expansion of cropland, grassland degradation, urbanization and other large-scale land use/cover change; among these, cropland expansion is one of the most important processes. To understand the effects of cropland expansion on seasonal temperatures over China, two 21-year simulations (spanning January 1, 1980–December 31, 2000), using the Regional Integrated Environmental Model System (RIEMS 2.0), were performed. The two simulations comprised current realistic land use/cover patterns and the previous vegetation cover without crop expansion, to investigate the impact of crop expansion on seasonal temperatures over China. The results showed that due to cropland expansion: (1) the most obvious changes occurred in the maximum temperatures, followed by the mean surface air temperatures, and the minimum temperatures were the least affected; (2) the summer mean maximum temperatures decreased in most parts of eastern China, and the temperatures changed significantly in most parts of northeast China, north China and central China (p < 0.05); (3) the surface air temperatures, maximum temperatures and minimum temperatures in summer decreased in the different regions by between −0.03 and −0.76 °C (the greatest temperature changes occurred in southwest China, and the smallest were in northeast China); (4) the net radiation flux and latent heat flux increased, while the sensible flux decreased, when semi-desert vegetation was replaced by dry land crops, in both summer and winter seasons, and the converse occurred when irrigated crops were replaced by dry land crops. In addition, the net radiation flux and sensible heat flux decreased, and the latent heat flux increased when short grass and tall grass were replaced dry land crops, as well as when dry land crops were replaced by irrigated crops.  相似文献   

5.
Surface roughness which partitions surface net radiation into energy fluxes is a key parameter for estimation of biosphere–atmosphere interactions and climate variability. An earth system model of intermediate complexity (EMIC), MPM-2, is used to derive the impact of surface roughness on climate from simulations of historical land cover change effects. The direct change in surface roughness leads to a global surface warming of 0.08 °C through altering the turbulence in the boundary layer. The regional temperature response to surface roughness associated deforestation is very strong at northern mid-latitudes with a most prominent warming of 0.72 °C around 50°N in the Eurasia continent during summer. They can be explained mainly as direct and indirect consequences of decreases in surface albedo and increases in precipitation in response to deforestation, although there are a few significant changes in precipitation. There is also a prominent warming of 0.25 °C around 40°N in the North American continent. This study indicates that land surface roughness plays a significant role which is comparable with the whole land conversion effect in climate change. Therefore, further investigation of roughness–climate relationship is needed to incorporate these aspects.  相似文献   

6.
《Continental Shelf Research》2007,27(3-4):542-559
Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579–2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288–299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796–2815]. The modeling predicts reflectivities that change from <12 dB for sands on the innermost shelf to >9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ∼100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0–35 m). Given that signal differences need to be ⩾2–3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars.  相似文献   

7.
Exploring the dynamics of the utilization of agricultural climatic resources (i.e., environmental factors that affect crop productivity such as light, temperature, and water) can provide a theoretical basis for modifying agricultural practices and distributions of agricultural production in the future. Northeast China is one of the major agricultural production areas in China and also an obvious region of climatic warming. We were motivated to analyze the utilization dynamics of agricultural climatic resource during spring maize cultivation from 1961 to 2010 in Northeast China. To understand these dynamics, we used the daily data from 101 meteorological stations in Northeast China between 1961 and 2010. The demands on agricultural climatic resources in Northeast China imposed by the cultivation of spring maize were combined and agricultural climatic suitability theory was applied. The growth period of spring maize was further detailedly divided into four stages: germination to emergence, emergence to jointing, jointing to tasseling, and tasseling to maturity. The average resource utilization index was established to evaluate the effects. Over the past five decades, Northeast China experienced increases in daily average temperature of 0.246 °C every decade during the growing season (May–September). At the same time, strong fluctuating decreases were observed in average total precipitation of 8.936 mm every decade and an average sunshine hour of 0.122 h every decade. Significant temporal and spatial changes occurred in K from 1961 to 2010. The K showed decreasing trends in Liaoning province and increasing trends in Jilin and especially in Heilongjiang province, which increased by 0.11. Spatial differences were visible in different periods, and the most obvious increase was found in the period 2001–2010. The areas with high values of K shifted northeastward over the past 50 years, indicating more efficient use of agricultural climatic resources in Northeast China.  相似文献   

8.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

9.
The oxygen isotope composition of fossil roots that have been permineralized by hematite are presented from eight different stratigraphic levels spanning the Upper Pennsylvanian and Lower Permian strata of north-central Texas. Hematite δ18O values range from − 0.4% to 3.7%. The most negative δ18O values occur in the upper Pennsylvanian strata, and there is a progressive trend toward more positive δ18O values upward through the lower Permian strata. This stratigraphic pattern is similar in magnitude and style to δ18O values reported for penecontemporaneous authigenic palaeosol phyllosilicates and calcites, suggesting that all three minerals record similar paragenetic histories that are probably attributed to temporal palaeoenvironmental changes across the Late Pennsylvanian and Early Permian landscapes.Palaeotemperature estimates based on paired δ18O values between penecontemporaneous hematite and phyllosilicate samples suggest these minerals co-precipitated at relatively low temperatures that are consistent with a supergene origin in a low-latitude soil-forming environment. Hematite–phyllosilicate δ18O pairs indicate (1) relatively low soil temperatures (∼ 24 ± 3 °C) during deposition of the upper Pennsylvanian strata followed by (2) a considerable rise in soil temperatures (∼ 35–37 ± 3 °C) during deposition of the lowermost Permian strata. Significantly, δD and δ18O values of contemporaneous phyllosilicates provide single mineral palaeotemperature estimates that are analytically indistinguishable from temperature estimates based on hematite–phyllosilicate oxygen isotope pairs. The results between the two temperature-proxy methods suggest that the inferred large temperature change across the Upper Pennsylvanian–Lower Permian boundary might be taken seriously. If real, such a significant climate change would have undoubtedly had far-reaching ecological effects within this region of Pangaea. Notably, there are important lithological and palaeobotanical changes, such as disappearance of coal and coal swamp floras, across the Upper Pennsylvanian–Early Permian boundary of north-central Texas that may be consistent with major climatic change toward warmer conditions.  相似文献   

10.
This study examines the recent evolution of the Greenland ice sheet and its six major drainage basins. Based on laser altimetry data acquired by the Ice, Cloud and Land Elevation Satellite (ICESat), covering the period September–November 2003 to February–March 2008, ice surface height changes and their temporal variations were inferred. Our refined repeat track analysis is solely based on ICESat data and is independent of external elevation models, since it accounts for both ice height changes and the local topography. From the high resolution ice height change pattern we infer an overall mean surface height trend of −0.12 ± 0.006 m yr−1. Furthermore, the largest changes could be identified at coastal margins of the ice sheet, exhibiting rates of more than −2 m yr−1. The total ice volume change of the entire ice sheet amounts to −205.4 ± 10.6 km3 yr−1. In addition, we assessed mass changes from 78 monthly Gravity Recovery and Climate Experiment (GRACE) solutions. The Release-04 gravity field solutions of GeoForschungsZentrum Potsdam cover the period between August 2002 and June 2009. We applied an adjusted regional integration approach in order to minimize the leakage effects. Attention was paid to an optimized filtering which reduces error effects from different sources. The overall error assessment accounts for GRACE errors as well as for errors due to imperfect model reductions. In particular, errors caused by uncertainties in the glacial isostatic adjustment models could be identified as the largest source of errors. Finally, we determined both seasonal and long-term mass change rates. The latter amounts to an overall ice mass change of −191.2 ± 20.9 Gt yr−1 corresponding to 0.53 ± 0.06 mm yr−1 equivalent eustatic sea level rise. From the combination of the volume and mass change estimates we determined a mean density of the lost mass to be 930 ± 11 kg m−3. This value supports our applied density assumption 900 ± 30 kg m−3 which was used to perform the volume–mass-conversion of our ICESat results. Hence, mass change estimates from two independent observation techniques were inferred and are generally in good agreement.  相似文献   

11.
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500–1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30–10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (∼10–7 km), it is the contrasting degrees of Neogene shortening (∼16–6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.  相似文献   

12.
A 2-year investigation into shoreface morphodynamic behaviour off a high-energy headland-embayment coast in Northern Ireland reveals important process–response mechanisms that cannot be explained solely by existing conceptual models. Fourteen sequential bathymetric surveys, conducted every 1–2 months, show that morphologic (seabed) change is not directly related to oceanographic forcing—extensive nearshore and shoreface accretion and erosion occurs under fair-weather, modal and high-energy conditions. The main factors which seem to cause significant change are long-duration (swell) events coupled with onshore winds, availability of (recently) introduced sediment, surges and elapsed time between storms and the next scheduled survey. Several high-energy events over a short time period (<30 days) did not result in extensive seafloor changes, contrary to expectations. Net seabed change over 2 years shows an average to 0.6 m m?2 of shoreface accretion from the nearshore to 24 m depth. Net erosion was not observed anywhere, including the subaerial beach. Geologic evidence strongly suggests that the source of the significant volume (7.7×105 m3) of sediment introduced into the study area must have been derived from the lower shoreface and/or inner shelf, beyond 24 m depth.  相似文献   

13.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.  相似文献   

14.
Equivalent dose (De) values were measured by using medium aliquots of different grain size quartz fractions of five lakeshore sediments from the arid region of north China. There are two different relationships between De values and grain sizes of these five samples. The first relationship is that the De values obtained from various grain sizes are in agreement within 1 delta errors. The second relationship is that De values are similar to each other for fractions between 125 and 300 μm, while the De value of the 63–90 μm fraction is 40~55% smaller than others. For example, the De values obtained for sample #3 are 20.15 ± 1.19 Gy, 19.80 ± 0.83 Gy and 20.93 ± 1.06 Gy for fractions of 90–125, 125–150 and 250–300 μm respectively, but are 10.79 ± 0.84 Gy for the 63–90 μm fraction. The second relationship can't be interpreted by previous studies of both dosimetry and heterogeneous bleaching. It is deduced for sample #2, #3 and #6 that fine particles (<90 μm) intruded after the dominant sedimentation. Comparison of OSL ages from different grain size fractions of sample #2 with a radiocarbon age from the same lithologic layer supports that fractions coarser than 125 μm yield more reliable burial ages, while the fraction finer than 90 μm yields underestimated ages for some lakeshore sediments from this arid region.  相似文献   

15.
《Marine pollution bulletin》2014,88(1-2):388-395
Distribution of sedimentary mercury in the Southern Baltic was investigated. Sediment samples were collected from the Southern Baltic in the period from 2009 to 2011, and concentrations of sedimentary total mercury (average 102 ng/g, range 5.8–225 ng/g) and methyl mercury (average 261 pg/g, range 61–940 pg/g) were measured in the manner that the influence of both patchiness and seasonal changes were assessed. Moreover, sedimentary mercury extracted with organic solvent- the so-called organic mercury was also analyzed (average 425 pg/g, range 100–1440 pg/g). There is a statistically significant dependence between organic mercury and both methyl mercury and total mercury concentrations in the sediments. Methyl mercury contribution to total mercury varied from 0.12% to 1.05%, while organic mercury contributed to 2% of total concentration on average. The area studied, although mercury concentrations exceed threefold the geochemical background, can be regarded as moderately contaminated with mercury, and methylmercury.  相似文献   

16.
Trends of the three hydro-meteorological variables precipitation, temperature and stream flow, represented by 13, 12, and 9 gauging stations, respectively, within the Abay/Upper Blue Nile basin have been studied to support water management in the region. The Trends were evaluated over different time periods depending on data availability at the stations. The statistical Mann–Kendall and Pettitt tests have been used to assess trends and change points respectively. The tests have been applied to mean annual, monthly, seasonal, 1- and 7-days annual minimum and maximum values for streamflow, while mean annual, monthly and seasonal timescales were applied to meteorological variables. The results are heterogeneous and depict statistically significant increasing/decreasing trends. Besides, it showed significant abrupt change of point upward/downward shift for streamflow and temperature time series. However, precipitation time series did not show any statistically significant trends in mean annual and seasonal scales across the examined stations.Increasing trends in temperature at different weather stations for the mean annual, rainy, dry and small rainy seasons are apparent. The mean temperature at Bahir Dar – typical station in the Lake Tana sub basin, has been increasing at the rate of about 0.5 °C/decade, 0.3 °C/decade in rainy season (June–September), 0.6 °C/decade in small rainy season (March–May), and 0.6 °C/decade in dry season (October–February). Other stations in the Abay/Upper Blue Nile show comparable results. Overall it is found that trends and change point times varied considerably across the stations and catchment to catchment. Identified significant trends can help to make better planning decisions for water management. However, the cause attributes to the observed changes in hydro-meteorological variables need further research. In particular the combined effects of land use/land cover change and climate variability on streamflow of Abay/Blue Nile basin and its tributaries needs to be understood better.  相似文献   

17.
Estimating past elevation not only provides evidence for vertical movements of the Earth's lithosphere, but also increases our understanding of interactions between tectonics, relief and climate in geological history. Development of biomarker hydrogen isotope-based paleoaltimetry techniques that can be applied to a wide range of sample types is therefore of continuing importance. Here we present leaf wax-derived n-alkane δD (δDwax) values along three soil altitudinal transects, at different latitudes, in the Wuyi, Shennongjia and Tianshan Mountains in China, to investigate δDwax gradients and the apparent fractionation between leaf wax and precipitation (εwax-p).We find that soil δDwax track altitudinal variations of precipitation δD along the three transects that span variable environment conditions and vertical vegetation spectra. An empirical δDwax-altitude relation is therefore established in which the average δDwax lapse rate of ? 2.27 ± 0.38‰/100 m is suitable for predicting relative paleoelevation change (relative uplift). The application of this empirical gradient is restricted to phases in the mountain uplift stage when the atmospheric circulation had not distinctly changed and to when the climate was not arid. An empirical δDwax–latitude–altitude formula is also calculated: δDwax = 3.483LAT ? 0.0227ALT ? 261.5, which gives the preliminary spatial distribution pattern of δDwax in modern China.Mean value of εwax-p in the extreme humid Wuyi Mountains is quite negative (? 154‰), compared to the humid Shennongjia (? 129‰) and the arid (but with abundant summer precipitation) Tianshan Mountains (? 130‰), which suggests aridity or water availability in the growing season is the primary factor controlling soil/sediment εwax-p. Along the Tianshan transects, values of εwax-p are speculated to be constant with altitude; while along the Wuyi and Shennongjia transects, εwax-p are also constant at the low-mid altitudes, but become slightly more negative at high altitudes which could be attributed to overestimates of precipitation δD or the vegetation shift to grass/conifer.Additionally, a reversal of altitude effect in the vertical variation of δDwax was found in the alpine zone of the Tianshan Mountains, which might be caused by atmospheric circulation change with altitude. This implies that the paleo-circulation pattern and its changes should also be evaluated when stable isotope-based paleoaltimetry is applied.  相似文献   

18.
《Marine pollution bulletin》2014,80(1-2):164-174
The influence of tuna penning on soft bottom habitat present in the vicinity of tuna pens and at distances 200 m and 1.5 km away, was assessed by comparing attributes of macroinvertebrate assemblages and sediment quality before (November 2000, March 2001) and after (November 2001, April 2002) initiation of the activity. Results from November 2001 indicated a significant increase in sediment organic carbon and organic nitrogen, and a non-significant increase in the abundance of Capitellidae in the vicinity of the cages. Similar results were obtained 200 m from the cages but not 1.5 km away, where the only change was a significant increase in organic nitrogen in sediment. Results from April 2002 indicated no significant change in sediment organic carbon and organic nitrogen, however, mean sediment grain size decreased significantly in the immediate vicinity of the cages. Changes in attributes of the benthic assemblages and sediment resulted from accumulation of uneaten feed-fish on the seabed.  相似文献   

19.
An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071–2100 in the PRUDENCE runs (A2 scenario) and the periods 2021–2050 and 2071–2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and −1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021–2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed.  相似文献   

20.
The glacier is an important and stable water supply in Central Asia. Monitoring the change of glacier and understanding the impacts of glacier change on river discharge are critical to predict the downstream water availability change in future. Glacier changes were discussed and their impacts on river discharge were evaluated by hydrological modeling with a distributed hydrological model SWAT under two land use and land cover scenarios (1970 and 2007) in Tekes watershed, the most important source of water discharge to the Ili River. Compared to the glacier area of 1511 km2 in 1970s it decreased by 332 km2 in 2007, which resulted in the contribution the discharge from precipitation in the glacier area to the average annual discharge of the watershed changing from 9.8% in the period 1966–1975 to 7.8% in the period 2000–2008. In the month scale, with the decrease of glacier area, the distribution of the contribution of monthly discharge from precipitation in the glacier area to the total of the watershed changed from bimodal pattern to unimodal pattern. By linking a hydrological model to remote sensing image analysis and Chinese glacier inventories to determine glacier area change our approach in quantifying the impacts of glacier changes on hydrology at different scales, will provide quantitative information for stakeholders in making decisions for water resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号