首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
2003年2月24日新疆伽师Ms6.5级地震震源破裂过程研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用中国数字地震台网和IncorporatedResearchInstitutionsforSeismology (IRIS)提供的远场宽频带P波垂向记录,基于有限地震断层方法,反演了2 0 0 3年2月2 4日新疆伽师6 5级地震震源破裂过程.结果表明,本次地震为北倾低角度稍具左移分量的逆冲破裂事件,断层面走向30 0°,倾角2 8°,震源深度7 5km .其震源机制与1997~1998年伽师强震群有明显区别,而与1996年阿图什地震相似.推断该地震是由塔里木盆地向北挤压,在天山造山带引发逆冲断层活动造成的.  相似文献   

2.
2008年5月12日中国汶川地区发生Mw7.9地震,震中位置103.4°E,31.0°N.主要发震断层空间展布长达300多公里,由南西方向到北东方向呈现明显的分段性,汶川一映秀段逆冲为主兼有少量的右旋走滑分量;安县一北川段为逆冲一右旋走滑的断层错动;青川段以右旋走滑为主兼有少量逆冲分量.采用改进后的复合震源强地面运动预...  相似文献   

3.
本文利用Envisat ASAR的升、降轨和宽幅数据,通过基于先验知识的最小二乘迭代逼近获取大柴旦2次地震的地表三维同震形变.结果表明,2008年MW6.3地震垂直向形变主要发生在断层南盘,以隆升形变为主,最大隆升量约10cm,北盘沉降量小于等于-1cm.东西向形变在南盘呈向东运动的特征,最大运动量约4cm,北盘向西运动,最大运动量约为-2cm.2009年MW5.8地震垂直向形变显示断层南盘抬升的特征,最大抬升量约27cm,北盘最大沉降量约-3cm.东西向形变表现为南盘向东运动,最大约10cm,北盘向西运动,约为-4cm.可以看出这两次地震均表现为逆冲为主,兼少量左旋走滑的震源特征.视线向结果无法判定同震形变的少量走滑特征,而地表三维分量可以有效地识别出少量左旋还是右旋走滑的震源特性.本文以视线向、垂直向、东西向形变量作为约束条件,利用Okada模型正演了2008年地震同震三维形变场.结果显示,采用逆冲兼少量左旋走滑的发震断层参数,视线向、垂直向、东西向正演结果与观测结果吻合.这也表明采用分解后的地表三维同震形变场可以有效地识别出发震断层的少量左旋走滑特征.  相似文献   

4.
2013年7月22日,在甘肃岷县漳县交界处发生MS6.6地震,地震震中位置靠近临潭—宕昌断裂.本文通过构建有限断层模型,利用国家强震动台网中心提供的12条强地面运动三分量资料,通过波形反演方法来研究这次地震的震源破裂过程.结果显示这次地震是发生在甘东南地区岷县—宕昌断裂带东段附近的一次MW6.1级逆冲兼具左旋走滑破裂事件,最大滑动量约为80cm.发震断层走向及滑动性质与岷县—宕昌断裂吻合,推断本次地震与东昆仑断裂向北的扩展和推挤密切相关,是岷县—宕昌断裂进一步活动的结果.  相似文献   

5.
汶川M_S8.0地震地表破裂带北川以北段的基本特征   总被引:30,自引:5,他引:25  
对北川-青川间汶川MS8.0地震地表破裂的野外地质调查表明,在这一段内主要存在一条地震地表破裂带,总体沿北川-青川断裂带分布。沿黄家坝、陈家坝、桂溪、平通、南坝、石坎等地的观察显示,该段地表破裂沿走向连续分布,结构单一,破裂长度为60~90km,地表破裂没有到达青川县关庄镇。可观察到的破裂长度在北川北至石坎之间,长62km,走向总体为20°~55°,运动学性质主要为右旋走滑逆冲。地震形成的地表破裂主要表现为垂向上的地表拱曲,指示了深部断层的逆冲性质;在水平运动方向上则主要表现为右旋走滑,不存在左旋走滑分量。地震地表破裂显示的同震垂直位移从西南段黄家坝的3m左右,向东北逐渐降低至南坝、石坎的1.5m左右;右旋水平位移没有明显变化或者略有增加,一般在1.5~2.0m之间。地表破裂特征表明,引起本次汶川MS8.0地震的发震构造是映秀-北川-青川断裂带,该断裂以逆冲运动为主,兼具右旋走滑分量,逆冲方向由NW向SE  相似文献   

6.
新疆地区在强震前地震条带不明显.本文对比分析了新疆天山与川滇地区区域构造背景和地震震源机制解,得到:①新疆天山地区区域地震构造以逆冲型为主,而川滇地区区域地震构造以走滑型为主.②1970年以来的天山地区中强地震以逆断层和走滑型地震类型为主,走滑型地震多数包含较大的倾滑分量;而川滇地区6级强震以走滑型地震类型为主,地震主要以水平错动为主.认为弱震条带适用于以水平剪切错动为主的地震,而新疆天山地区地震倾滑分量较大,因此中强地震前弱震条带图像不清晰,中短期地震预报意义不显著.  相似文献   

7.
新疆及周缘构造破裂特征及地震序列类型   总被引:2,自引:0,他引:2       下载免费PDF全文
横亘新疆境内的天山及其周边的西昆仑、阿尔金和阿尔泰是中国大陆著名的强构造运动区和地震活动带。在对新疆构造区应力环境、动力过程、断层运动变形特征和地震序列分析讨论的基础上,对新疆及其周缘主要构造区地震破裂方式和序列类型进行研究,得出如下结论:(1)西昆仑构造区受来自青藏块体和塔里木块体NS和NW向水平压应力和垂向力的作用,构造运动呈现出走滑与逆冲特征,震源破裂以走滑型为主,数量较少的逆断型地震主要分布在西昆仑帕米尔一侧的深震挤压区,正断型地震主要出现在西昆仑与阿尔金交汇的拉张盆地及附近。该区主余型地震占63%,6级以上地震序列也存在多震类型。(2)阿尔金断裂带位于西昆仑北缘断裂和北祁连断裂过渡带,受青藏块体向北和向西的推挤,断裂本身的左旋位移量通过两端逆冲挤压而转化,使得青藏高原北边界不断向外扩展。在此力源下,阿尔金断裂带震源破裂以走滑为主,也有少量的逆冲型地震。地震序列中主余型和孤立型地震占比相同(占44%)。(3)在印度板块和亚欧大陆碰撞效应影响下,天山地区产生近NNE向水平压应力,构造运动显现出带旋性特征的逆冲和走滑,震源破裂方式与之相吻合。而天山构造大跨度的空间展布、扩展形式的多样性和地震破裂的两重性,又影响到地震序列类型的多样性,使得主余型、孤立型和多震型地震在不同构造部位呈现优势分布。(4)阿尔泰的构造运动可能受到了来自印度板块与亚欧板块碰撞的远程效应和西伯利亚块体南向运动的双向影响,形成NNE和SW向水平挤压力,主要大型发震断裂做右旋剪扭错动,而一些深断裂则以逆冲运动为主。震源破裂呈现出走滑(占64%)和部分的逆冲(占27%),6级以上地震序列主要为主余型,5级左右地震则多为孤立型。  相似文献   

8.
天山是远离板块边界的陆内造山带,特点是构造变形复杂强烈,强震多发。天山南北向的变形速率约为20mm/a,约为印度板块与欧亚板块汇聚速率的一半左右,这一变形量是如何被天山吸收的,天山的构造变形又是如何进行的,其构造样式如何?这些关键性问题目前仍存在较大的争论。天山地区主要发育有3组构造带,最显著的是位于南北两侧山前与山体近乎平行的逆断层—褶皱带,同时,在山体内部还发育有一系列NW向的右旋走滑断裂和NEE向的左旋走滑断裂,这些断裂共同控制了天山的新生代构造变形。目前,对于天山山前的逆断裂系统晚第四纪变形特征和滑动速率等方面研究非常丰富,对天山内部NW向的右旋走滑断裂晚第四纪活动特征也有一些定量数据,而对NEE向断裂晚第四纪以来的活动特征目前尚处空白状态。本文以迈丹断裂为切入点,通过对该断裂晚第四纪以来的运动学特征、滑动速率和古地震活动特征等资料的详细研究,获得西南天山地区NEE向断裂晚第四纪活动参数,同时,通过收集和补充调查天山其他主要活动断裂晚第四纪以来的运动特征,完善天山活动断裂几何学和运动学图像;结合已有研究资料、地震活动特征和GPS数据,研究天山内部不同方向、不同运动性质的断裂的活动特征,分析天山这些断裂在天山的构造变形中发挥了怎样的作用,在此基础上进一步研究天山地区的构造变形样式及其与地震的关系。本文得到的主要认识有:迈丹断裂东段控制的阿合奇谷地内发育有多级晚第四纪地貌面,利用光释光、10Be暴露年龄以及14C等方法对玉山古溪两岸的阶地年龄进行了限定,并与气候变化序列进行了比对,得到阶地的废弃形成发生在间冰期或者冰期—间冰期的转换阶段。玉山古溪T6阶地(~20ka)之前,河流平均下切速率与迈丹断裂的活动速率基本一致,表明晚更新世晚期之前,河流的下切与阶地的形成主要受迈丹断裂活动影响,是构造隆升导致的河流快速下切。~20ka之后河流的下切速率开始增大,至全新世中晚期,河流下切速率甚至达到~12mm/a,远远大于断裂的活动速率,表明晚更新世末期以来,河流的下切与阶地的形成主要受气候因素驱动。全新世以来河流下切速率的快速增大,很可能是由于全新世期间气候快速波动造成的。迈丹断裂是一条全新世活动断裂,该断裂晚第四纪以来,以逆冲兼左旋走滑为主,通过精细测量被断错的晚第四纪地貌面和年代学测定,得到断裂的逆冲滑动速率为(1.24±0.20)mm/a,左旋走滑速率为(1.74±0.61)mm/a。迈丹断裂晚第四纪期间发生过多期断错地表的古地震事件,古地震平均复发间隔为3370~4265a,断裂最新一次古地震事件发生在1.76ka之后。迈丹断裂是柯坪推覆构造的根部断裂,该断裂晚第四纪以来发生过多次断错地表的强震事件。古地震研究表明,推覆体前缘的柯坪断裂晚第四纪以来也发生过多期古地震事件,而且两条构造上古地震事件的发生年代很接近,尽管我们并不能确定迈丹断裂最新一次古地震事件是否与柯坪塔格断裂上的是否为同一次事件,但这一现象反映该地区地震破裂存在两种可能:(1)迈丹断裂与柯坪塔格断裂上最新一次古地震事件是同一次事件,这表明迈丹断裂与柯坪塔格断裂具有级联破裂的特征;(2)迈丹断裂上最新一次古地震事件与柯坪塔格断裂上的不是同一期事件,分别单独破裂,虽然两条断裂上的古地震事件不是同期破裂,但均发生在~1.7ka之后,时间间隔不长,表明柯坪推覆构造根部的迈丹断裂和前缘的柯坪塔格断裂之间可能存在相互的影响或关联,柯坪地区的强震活动具有丛集发生的特征。迈丹断裂晚第四纪活动的发现,表明西南天山柯坪推覆构造与天山其他地区的推覆构造变形模式不同,推覆体最前缘的柯坪断裂活动强烈,而根部断裂晚第四纪以来也有很强的活动,断裂的新活动并没有完全迁移到推覆体前缘的新生构造带上,这可能是一种无序或反序的构造变形模式。西南天山地区的左旋走滑运动主要发生在推覆体根部的迈丹断裂上,推覆体前缘的逆断裂—背斜以逆冲运动为主,没有明显的走滑运动。GPS资料表明,普昌断裂以西的地区,应变没有完全闭锁集中在根部的迈丹断裂上,一部分应变通过滑脱面传递到前缘的逆断裂-背斜带上;在柯坪推覆构造的东部地区,从根部的迈丹断裂至前缘的柯坪塔格断裂可能是一个孕震体系,震间的形变主要在推覆体根部的构造上闭锁,前缘构造基本没有明显变形,这可能是柯坪推覆构造东西两侧中小地震活动存在明显差异的主要原因。西南天山还发育有两条NEE走向的断裂,通过变形地貌测量与年代学测定得到那拉提断裂晚第四纪以来以左旋逆冲运动为主,断裂逆冲速率~2.1 mm/a,左旋走滑速率为~2.5mm/a;克敏断裂也是一条左旋走滑断裂,断裂的左旋走滑速率为~1.5mm/a。西南天山3条NEE向的断裂带吸收了~6mm/a的左旋走滑运动,与塔里木斜向俯冲造成的左旋走滑运动量基本一致,这表明塔里木斜向俯冲造成的左旋走滑运动在西南天山地区基本被分解吸收。西南天山地区吸收了塔里木向天山俯冲汇聚绝大部分的压缩速率和左旋剪切运动,挤压缩短在山体内部和山前的新生褶皱带上均有分配,左旋剪切则主要发生在天山内部高角度的边界断裂上,整个西南天山构成了一个大型的花状构造。在天山南北两侧,构造变形以逆断层为代表的地壳缩短和增厚为特征,而天山内部则为一个大型的剪切带,同时还具有明显的逆冲运动。天山地区主要存在两组走滑断裂,一是NEE向的左旋走滑构造,另一组是NW-NWW向的右旋走滑断裂,这两组断裂主要发育在天山内部,但这些断裂共同调节了山体内部的走滑剪切运动,山体内部高角度的走滑逆冲断裂与山前低倾角的逆冲断裂系共同组成了天山构造变形图像。天山地区的压缩变形主要分布在天山南北两侧的山前地区,而天山内部的活动断裂则具有明显的走滑分量,在剖面上,整个天山形成了一个大型的花状构造。尽管天山整体的构造变形为西强东弱,不同地区变形强度和幅度差异较大,但是天山南北和东西两侧的构造变形样式还是基本对称的。受塔里木块体向北的挤压作用,西南天山地区总体走向为NEE向,南天山东段整体则呈NWW走向,与塔里木与南天山的分界断裂在形态上构成一个"三角形"向北楔入。整个西南天山内部是一个大型的左旋剪切带,南天山东段整体为右旋走滑性质,塔里木和南天山之间的边界断裂以逆冲运动为主。在天山北部受到刚性准噶尔地块阻挡的作用下,北天山西段构造线整体NW-NWW向,而90°E以东的北天山地区构造线整体为NEE走向,与近东西走向的准噶尔与北天山的分界断裂在形态上构成一个倒"三角形"向南楔入。北天山西段右旋走滑性质的博—阿断裂和喀什河断裂所围限的楔形块体整体向西运动,北天山东段NEE向的左旋走滑断裂构成了倒"三角楔"的东边界,准噶尔与北天山的分界逆冲断裂带是"三角楔"的底界。在近南北向的挤压应力下,天山的构造变形整体以压缩变形为主,山体内部发育的一系列走滑构造带表明,天山在东西方向上还存在一定的侧向挤出,这些走滑断裂调节了天山不同地区压缩量的差异。地质数据和GPS资料均证实,天山地区逆冲运动量要明显大于走滑分量,山体内部走滑断裂所控制的块体虽然存在向东西两侧的侧向挤出,但与南北向最大达~18mm/a的压缩速率相比,变形速率不高,侧向挤出幅度有限。  相似文献   

9.
通过对2008年5月12日发生的汶川8.0级地震的发震构造--中央断裂映秀-南坝段地震地表破裂、地表形变及断裂上余震迁移等特征的详细调查和分析,结果表明:(1)白映秀至南坝,断层活动方式表现为由逆冲逐渐过渡为逆冲-右旋走滑、再到走滑分量与逆冲分量大致相当,同时断层两盘滑动伴有相对弱旋转活动;(2)在断层总体走向NE向、逆冲为主兼右旋走滑活动方式下,局部表现为走向NW向、逆冲为主兼左旋走滑活动方式;(3)地震裂缝与单侧破裂面关系,以及地表重叠缩短形变特征表明,断层活动、应变能释放是在近EW向区域构造应力及NE向局部构造应力综合作用下的结果.依据断层沿线地表裂缝产状的变化,粗略推出映秀至南坝段主应力方向由SEE向NEE方向变化,与前人使用CAP(Cut and Pasate)方法求出的主余震源机制方向基本一致.  相似文献   

10.
通过对2008年5月12日发生的汶川8.0级地震的发震构造——中央断裂映秀—南坝段地震地表破裂、地表形变及断裂上余震迁移等特征的详细调查和分析,结果表明:(1)自映秀至南坝,断层活动方式表现为由逆冲逐渐过渡为逆冲-右旋走滑、再到走滑分量与逆冲分量大致相当,同时断层两盘滑动伴有相对弱旋转活动;(2)在断层总体走向NE向、逆冲为主兼右旋走滑活动方式下,局部表现为走向NW向、逆冲为主兼左旋走滑活动方式;(3)地震裂缝与单侧破裂面关系,以及地表重叠缩短形变特征表明,断层活动、应变能释放是在近EW向区域构造应力及NE向局部构造应力综合作用下的结果.依据断层沿线地表裂缝产状的变化,粗略推出映秀至南坝段主应力方向由SEE向NEE方向变化,与前人使用CAP(Cut and Pasate)方法求出的主余震源机制方向基本一致.  相似文献   

11.
本文采用双差定位方法对云南鲁甸MS6.5地震震后16天的地震序列进行重定位研究.重定位结果显示,主震位于27.11°N,103.35°E,震源深度约15 km;地震序列主要呈“L”形优势分布,分为SSE向和近EW向两支,并均呈现近垂直的震源分布特征,显示此次地震为走滑型,并存在两个不同方向的破裂面.虽然此次地震发生于NE向昭通断裂及其反冲断裂(龙树断裂、大岩洞断裂)附近,但这些断裂均为逆冲型断裂,被排除了作为发震断裂的可能性;鲁甸地震发生在呈放射性分布的多条断裂的交汇部位,SSE向破裂分支与包谷垴断裂的方向一致,近EW向破裂分支与小河断裂南端的走向一致. 鲁甸地震可能已将包谷垴断裂和小河断裂在深部贯通.  相似文献   

12.
On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.  相似文献   

13.
Based on the phase report of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence ML ≥ 1.0 was relocated by the HypoDD method. The results show that the aftershocks were distributed along NE and NW direction. The aftershocks were in the depths of 5~15km. In addition, by using the digital waveforms of Xinjiang Seismic Network, the best double-couple focal mechanism of the main shock and some aftershocks of MS ≥ 3.8 were determined by the CAP method. Based on the above studies, the source depth, focal mechanism and aftershock distribution of the Hutubi MS6.2 earthquake were analyzed and the seismogenic structure was discussed. The nodal plane parameters of the best double-couple focal mechanism are strike 144°, dip 26°, rake 118°, and strike 293°, dip 67°, rake 77°, respectively. The moment magnitude MW is about 5.9, with centroid depth of 15.2km. These show that the main shock was a thrust type. Most focal mechanism solutions of the aftershocks were shown as a thrust type, which are similar to the main shock. It is speculated that the possible seismogenic fault of this earthquake is the Huorgosi-Manas-Tugulu Fault.  相似文献   

14.
Based on the digital waveforms of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence (ML ≥ 1.0) was relocated precisely by HypoDD.The best double-couple focal mechanisms of the main shock and aftershocks of ML ≥ 4.0 were determined by the CAP method. We analyzed the characteristics of spatial distribution, focal mechanisms and the seismogenic structure of earthquake sequence. The results show that the main shock is located at 43.775 9°N, 86.363 4°E; the depth of the initial rupture and centriod is about 15.388km and 17km. The earthquake sequence extends unilaterally along NWW direction with an extension length of about 15km and a depth ranging 5~15km. The characteristics of the depth profiles show that the seismogenic fault plane dips northward and the faulting is dominated by thrusting. The nodal planes parameters of the best double-couple focal mechanisms are:strike 292°, dip 62° and rake 80° for nodal plane I, and strike 132°, dip 30° and rake 108° for nodal plane Ⅱ, indicating that the main shock is of thrust faulting. The dip of nodal planeⅠis consistent with the dip of the depth profile, which is inferred to be the fault plane of seismogenic fault of this earthquake. According to the comprehensive analysis of the relocation results, the focal mechanism and geological structure in the source region, it is preliminarily inferred that the seismogenic structure of the Hutubi MS6.2 earthquake may be a backthrust on the deeper concealed thrust slope at the south of Qigu anticline. The earthquake is a "folding" earthquake taking place under the stress field of Tianshan expanding towards the Junggar Basin.  相似文献   

15.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

16.
Using the digital broadband seismic data recorded by Xinjiang network stations, we obtained focal mechanism of the July 3 Pishan, Xinjiang, MS6.5 earthquake with generalized Cut and Paste(gCAP)inversion method. The strike, dip and rake of first nodal plane are 97°, 27°, 51°, and the second nodal plane are 318°, 70°, 107°. The centroid depth and moment magnitude are calculated to be 12km and 6.4. Combining with the distribution of aftershocks, we conclude that the first nodal plane is the seismogenic fault, and the main shock presents a thrust earthquake at low angle. We relocated 1014 earthquakes using the double-difference algorithm, and finally obtained 937 relocated events. Our results show that the earthquake sequences clearly demonstrate a unilateral extension about 50km nearly in NWW direction, and are mainly located above 25km depth, especially the small earthquakes are predominately located at the shallow parts. Furthermore, the focal depth profile shows a southwestward dipping fault plane at the main shock position, suggesting listric thrust faulting, which is consistent with the dip of the mainshock rupture plane. The spatial distribution of aftershocks represents that the Tarim block was thrust under the West Kunlun orogenic belt. In addition, the dip angle of the fault plane gradually increases along the NWW direction, possibly suggesting a gradual increase of strike-slip component during the NWW rupturing process. From above, we conclude that the Pishan MS6.5 earthquake is the result of Tibet plateau pushing onto the Tarim block from south to north, which further confirms that the continuous collision of India plate and Eurasia plate has strong influence on the seismic activity in and around the Tibet plateau.  相似文献   

17.
GUO Zhi  CHEN Li-chun  LI Tong  GAO Xing 《地震地质》2018,40(6):1294-1304
The W-phase is a long period phase arriving between the P and S wave phases of a seismic source, theoretically representing the total near-and far-field long-period wave-field. Recent study suggests that the reliable source properties of earthquake with magnitude greater than ~MW4.5 can be rapidly inverted by using the W-phase waveform data. With the advantage of W-phase, most of major earthquake research institutes in the world have adopted the W-phase based inversion method to routinely assess focal mechanism of earthquake, such as the USGS and GFZ. In this study, the focal mechanism of the August 8, 2017 M7.0 Sichuan Jiuzhaigou and August 9, 2017 M6.6 Xinjiang Jinghe earthquakes were investigated by W-phase moment tensor inversion technique using global seismic event waveform recordings provided by Incorporated Research Institutions for Seismology, Data Management Center. To get reliable focal mechanism, we strictly select raw waveform data and carry out inversion in stages. At first, we discard waveform without correct instrument information. Then we carry out an initial inversion using selected waveform data to get primary results. Using the preliminary results as input, we carry out grid-search based inversion to find the final optimal source parameters. The inverted results indicate that the August 8, M7.0 Sichuan Jiuzhaigou shock resulted from rupturing on a NW-trending normal fault with majority of strike-slip movement. The parameters of two nodal planes are strike 152.7°, dip 61.4°, rake -4.8° and strike 245.0°, dip 85.8°, rake -151.3° respectively, and focal depth is 14.0km. The August 9, Xinjiang Jinghe M6.6 shock resulted from rupturing on a south-dipping thrust fault with left-lateral strike-slip. The parameters of two nodal planes are strike 100.6°, dip 27.5°, rake 114.1° and strike 259.3°, dip 65.1°, rake 78.0°, and the focal depth is 16.0km. The direction of two nodal planes is consistent with regional seismotectonic background.  相似文献   

18.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

19.
本文提出并试验了一种基于接收函数建立区域模型进行震源机制反演的方法.选取四川地震台网记录的M≥3且信噪比高的近震波形资料,反演得到了芦山地震序列中74个地震的震源机制.通过对震源深度和震源机制的综合分析,探讨了芦山地震的发震构造和区域应力场状态.采用接收函数方法反演获取了26个台站下方的S波速度结构,对不同区域的台站反演结果进行叠加平均,以此区域平均S波速度作为本文震源机制反演使用的区域模型的S波速度;区域模型的P波速度由经验公式给出.反演稳定性测试表明,使用不同模型或对原始波形记录加入随机噪声的反演结果与原始反演相比,震源深度最大误差为1km,断层面各参数误差水平也很低,且显示的发震类型是一致的,其中随机噪声带来的误差小于模型带来的误差.主震反演得到的震源机制解为:震源深度17km,矩震级6.47;节面Ⅰ走向213°,倾角51°,滑动角98°;节面Ⅱ走向20°,倾角40°,滑动角80°;显示芦山主震可视为纯逆冲型地震,发震构造可能是某个具有较大倾角的逆冲断层,而不是低缓的推覆构造的基底滑脱面.同时本文反演获取的73个M≥3余震的震源机制绝大多数也显示了类似的发震类型,逆冲型地震为67个,占92%,具有绝对优势;走滑型地震为5个,正断型地震为1个.其中5个走滑型地震中的4个均分布在震源区的东北端.整个芦山地震序列深度集中在12~20km,且沿震源区短轴的余震深度剖面有自西向东呈逐步变浅的趋势,呈现清晰的铲形断面结构,结合本地地质构造,可以推断芦山地震序列主要发生在龙门山前山断裂以东的逆冲推覆体内的一个隐伏断裂上.P轴方位角优势方位与区域应力场及汶川震源区南段的相一致,表明芦山序列地震活动主要受区域应力场控制,且汶川震后该区应该不存在应力场变化.P轴仰角随深度分布则显示了孕震层在浅部为脆性上地壳,而深部已经进入了中地壳低速层.断层面的几何形态简单,倾角均值在不同深度保持稳定在55°左右,与主震倾角接近,这与汶川震源区南段的研究结果明显不同,揭示了龙门山断裂带南段与此次芦山发震断裂在断层面几何形态上的明显差异.  相似文献   

20.
赵博  高原  黄志斌  赵旭  李大虎 《地球物理学报》2013,56(10):3385-3395
2013年4月20日发生了四川芦山MS7.0地震,主震中位于青藏地块与华南地块结合部的龙门山断裂带南端.本研究用双差定位法对芦山地震主震及余震序列进行重新定位,得到主震位置为(30.29°N,102.97°E,17.82 km)及4100多次余震重新定位结果.利用GSN/IRIS台网和国家台网及四川省区域台网的波形数据对主震及部分余震进行了震源机制解反演.结果表明,主震为一次逆冲地震,根据余震序列分布确定发震断层面走向为200°,震源机制解断层倾角为45°.基于震源断层面解和断层滑动方向,采用力轴张量计算法得到了研究区域的平均主压应力方向约为N112°E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号