首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The tuff ring of Averno (3700 years BP) is a wide maar-type, lake-filled volcano which formed during one of the most recent explosive eruptions inside the Campi Flegrei caldera.The eruptive products consist of (a) a basal coarse unit, intercalated ballistic fallout breccia, subplinian pumice deposits and pyroclastic surge bedsets and (b) an upper fine-grained, stratified, pyroclastic surge sequence.During the deposition of the lower unit both purely magmatic (lapilli breccia) and hydromagmatic episodes (wavy and planar bedded, fine ash pyroclastic surge bedsets) coexisted. The hydromagmatic deposits exhibit both erosive and depositional features. The upper unit mostly comprises fine grained, wet pyroclastic surge deposits. The pyroclastic surges were controlled by a highly irregular pre-existing topography, produced by volcano-tectonic dislocation of older tuff rings and cones.Both the upper and lower units show decreasing depletion of fines with increasing distance from the vent. The ballistic fallout layers, however, exhibit only a weak increase in fines with distance from the vent, in spite of marked fining of the lapilli and blocks. The deposits consist dominantly of moderately to highly vesicular juvenile material, generated by primary magmatic volatile driven fragmentation followed by episodes of near-surface magma-water interaction.The evolution of the eruption toward increased fragmentation and a more hydromagmatic character may reflect that the progressive depletion in magmatic volatiles and a decrease in conduit pressure during the last stage of the eruption, possibly associated with a widening of the vent at sea level.  相似文献   

2.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

3.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   

4.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

5.
The 1957–1958 eruption of Capelinhos, Faial island, Azores, involved three periods of surtseyan, hydromagmatic activity: two in 1957 and one in 1958. Deposits from this eruption are exposed both in sea cliffs cut into the flanks of the tuff cone and more distally >1 km from the vent. Five lithofacies are identified: lithofacies I is composed of even thickness beds with laterally continuous internal stratigraphy and is interpreted to have been formed by fallout. Lithofacies II consists of beds with internally discontinuous lenses, and has sand-wave structures that increase in abundance toward the outer margins of the tuff cone. This lithofacies is interpreted as having been deposited from pyroclastic surges. Lithofacies III is composed of mantle-bedded deposits with laterally discontinuous internal stratigraphy. This lithofacies is interpreted to have been formed by hybrid processes where fallout of tephra occurred simultaneously with pyroclastic surges. In the outer flanks of the tuff cone, lithofacies III grades laterally into fallout beds of lithofacies I. Lithofacies IV consists of alternating beds of coarse ash aggregates and non-aggregated fine ash, and is particularly well developed in distal regions. Some of this facies was formed by fallout. Alternating beds also occur plastered against obstacles up to 2 km from the vent, indicating an origin from wet pyroclastic surges. The orientation of plastered tephra indicates that the surges were deflected by topography as they decelerated. The distinction between surge and fallout in distal regions is uncertain because wind-drifted fallout and decelerating surge clouds can generate similar deposits. Lithofacies V consists of scoria lapilli beds interpreted to be fallout from hawaiian-style fire-fountaining in the later stages of the eruption. Juvenile pyroclasts within hydromagmatic deposits are predominantly poorly vesicular (25–60% of clasts <30% vesicles). However, on both micro- and macroscopic scales, there is a wide range in clast vesicularity (up to 70% vesicles) indicating that, although fragmentation was predominantly hydromagmatic, vesiculation and magmatic-volatile-driven fragmentation operated simultaneously.  相似文献   

6.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

7.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

8.
The La Breña — El Jagüey Maar Complex, of probable Holocene age, is one of the youngest eruptive centers in the Durango Volcanic Field (DVF), a Quaternary lava plain that covers 2100 km2 and includes about 100 cinder and lava cones. The volcanic complex consists of two intersecting maars — La Breña and El Jagüey — at least two pre-maar scoria cones and associated lavas, and a series of nested post-maar lava and scoria cones that erupted within La Breña Maar and flooded its floor with lava to form one or more lava lakes. We believe that El Jagüey Maar formed first, but pyroclastic deposits associated with its formation are exposed at only a few places in the lower maar walls. A perennial lake in the bottom of El Jagüey marks the top of an aquifer about 60 m below the lava plain. Interaction of the rising basanitic magmas with this aquifer was probably responsible for the hydromagmatic eruptions at the maar complex. In the southeastern quadrant of La Breña and in most parts of El Jagüey, the upper maar walls expose a thick pyroclastic sequence of tuffs, tuff breccias, and breccias that is dominated by thinly layered sandwave and plane-parallel surge beds and contains minor interlayered scoria-fall horizons. We conclude that these deposits in the upper walls of both maars erupted during the formation of La Breña, based on: (1) thickness variations in a prominent scoria-fall marker bed interlayered with the surge deposits; (2) inferred transport directions for ballistic clasts, channels, and dune-like bedforms; and (3) lateral facies changes in the surge deposits. Some of the surge clouds from La Breña apparently travelled down the inner southwestern wall of El Jagüey, fanned out across its floor, and climbed up the opposite walls before emerging onto the surrounding lava plain. These clouds deposited steep, inward-dipping surge deposits along the lower walls of El Jagüey. Following this hydromagmatic phase, which was responsible for the formation of the maars, a series of strombolian eruptions took place from vents within La Breña. At many places along the maar rims these eruptions completely buried the surge beds under a thick sequence of post-maar scoriae and ashes. The outer flanks of the maar complex and the surrounding lava plain are also blanketed by post-maar ashes. The final phase of activity involved effusive eruptions of post-maar lavas from vents on the floor of La Breña. The evolutionary sequence from hydromagmatic eruptions during formation of the maars, through strombolian eruptions of the post-maar scoriae and ashes, and finally to the post-maar lavas appears to reflect the declining influence of magma-groundwater interactions with time. Basanitic magmas from all eruptive stages carried spinel-lherzolite and feldspathic-granulite xenoliths to the surface. The La Breña — El Jagüey Maar Complex contains the only known hydromagmatic vents in the DVF and the largest spinel-lherzolite xenoliths, which range up to 30 cm diameter. These two observations indicate an unusually rapid ascent rate for these basanitic magmas compared to those from other DVF vents.  相似文献   

9.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   

10.
A detailed stratigraphic analysis of the Avellino plinian deposit of the Somma-Vesuvius volcano shows a complicated eruptive sequence controlled by a combination of magmatic and hydromagmatic processes. The role of external water on the eruptive dynamics was most relevant in the very early phase of the eruption when the groundwater explosively interacted with a rising, gas-exolving magma body creating the first conduit. This phase generated pyroclastic surge and phreatoplinian deposits followed by a rapidly increasing discharge of a gas-rich, pure magmatic phase which erupted as the most violent plinian episode. This continuing plinian phase tapped the magma chamber, generating about 2.9 km3 of reverse-graded fallout pumice, more differentiated at the base and more primitive at the top (white and gray pumice). A giant, plinian column, rapidly grew up reaching a maximum height of 36 km.The progressive magma evacuation at a maximum discharge rate of 108 kg/s that accompanied a decrease of magmatic volatile content in the lower primitive magma allowed external water to enter the magma chamber, resulting in a drastic change in the eruptive style and deposit type. Early wet hydromagmatic events were followed by dry ones and only a few, subordinated magmatic phases. A thick, impressive sequence of pyroclastic surge bedsets of over 430 km2 in area with a total volume of about 1 km3 is the visible result of this hydromagmatic phase.  相似文献   

11.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   

12.
Basal layered deposits of the large-volume Peach Springs Tuff occur beneath the main pyroclastic flow deposit over a minimum lateral distance of 70 km in northwestern Arizona (USA). The basal deposits are interpreted to record initial blasting and pyroclastic surge events at the beginning of the eruption; the pyroclastic surges traveled a minimum of 100 km from the (as yet unknown) source. Changes in bedding structures with increasing flow distance are related to the decreasing sediment load of the surges. Some bed forms in the most proximal part of the study area (Kingman, Arizona) can be interpreted as being shock induced, reflecting a blast origin for the surges. Component analyses support a hydrovolcanic origin for some of the blasting and subsequent pyroclastic surges. The eruption apparently began with magmatic blasts, which were replaced by hydrovolcanic blasts. Hydrovolcanic activity may be partially related to failure of the conduit walls that temporarily plugged the vent. A single large-volume pyroclastic flow immediately followed the blast phase, and no evidence has been observed for a Plinian eruption column. The stratigraphic sequence indicates that powerful hydrovolcanic blasting rapidly widened the vent, thus bypassing a Plinian fallout phase and causing rapid evolution to a collapsing eruption column. Similar processes may occur in other large-volume ignimbrite eruptions, which commonly lack significant Plinian fallout deposits.  相似文献   

13.
Eruptive scenarios associated with the possible reactivation of maar-forming events in the Quaternary, ultrapotassic Colli Albani Volcanic District (CAVD) provides implications for volcanic hazard assessment in the densely populated area near Rome. Based on detailed stratigraphy, grain size, componentry, ash morphoscopy and petro-chemical analyses of maar eruption products, along with textural analysis of cored juvenile clasts, we attempt to reconstruct the eruptive dynamics of the Prata Porci and Albano maars, as related to pre- and syn-eruptive interactions between trachybasaltic to K-foiditic feeder magmas and carbonate–silicoclastic and subvolcanic country rocks. Magma volumes in the order of 0.5–3.1 × 108 m3 were erupted during the monogenetic Prata Porci maar activity and the three eruptive cycles of the Albano multiple maar, originating loose to strongly lithified, wet and dry pyroclastic surge deposits, Strombolian scoria fall horizons and lithic-rich explosion breccias. These deposits contain a wide range of accessory and accidental lithic clasts, with significant vertical stratigraphic variations in the lithic types and abundances. The two maar study cases hold a record of repeated transitions between magmatic (i.e, Strombolian fallout) and hydromagmatic (wet and dry pyroclastic surges) activity styles. Evidence of phreatic explosions, a common precursor of explosive volcanic activity, is only found at the base of the Prata Porci eruptive succession. The quantitative evaluation of the proportions of the different eruptive styles in the stratigraphic record of the two maars, based on magma vs. lithic volume estimates, reveals a prevailing magmatic character in terms of erupted magma volumes despite the hydromagmatic footprint. Different degrees of explosive magma–water interaction were apparently controlled by the different hydrogeological and geological–structural settings. In the Prata Porci case, shifts in the depth of magma fragmentation are proposed to have accompanied eruption style changes. In the Albano case, a deeply dissected geothermal aquifer in peri-caldera setting and variable mass eruption rates were the main controlling factors of repeated shifts in the eruptive style. Finally, textural evidence from cored juvenile clasts and analytical modeling of melt–solid heat transfer indicate that the interacting substrate in the Prata Porci case was at low, uniform temperature (~ 100 °C) as compared to the highly variable temperatures (up to 700–800 °C) inferred for the geothermal system beneath Albano.  相似文献   

14.
Xenoliths in pyroclastic fall deposits from the 1975 Tolbachik eruption constrain the timing and development of subsurface conduits associated with basaltic cinder cone eruptions. The two largest Tolbachik vents contain xenoliths derived from magmatic and hydromagmatic processes, which can be correlated with observed styles of eruption activity. Although many basaltic eruptions progress from early hydromagmatic activity to late magmatic activity, transient hydromagmatic events occurred relatively late in the 1975 eruption sequence. Magmatic fall deposits contain 0.01–0.3 vol.% xenoliths from <3-km-deep rocks, likely derived from 6–15-m-wide and 1.7–2.8-km-deep conduits. Intervals that supported the highest tephra columns (i.e., droplet flow regime) produced few of these xenoliths; most were derived from intervals with relatively lower columns and active lava flows (i.e., annular 2-phase flow). Several periods of decreased eruptive activity resulted in inflow of groundwater from >500 m depth into the dry-out zone around the conduit, disrupting and ejecting 105–106 m3 of wall-rock through hydromagmatic processes with conduits widening to 8–48 m. Hydromagmatic falls contain 60–75 vol.% of highly fragmented xenoliths, with juvenile clasts displaying obvious magma-water interaction features. During the largest hydromagmatic event, unusual breccia-bombs formed containing a wide range of fresh and pyrometamorphic xenoliths suspended in a quenched basaltic matrix. Hydromagmatic activity during the 1975 Tolbachik eruption occurred below likely fragmentation depths for a basalt containing 2.2 wt.% magmatic water. This activity is more likely related to conduit-wall collapse rather than variations in conduit-flow pressure. In contrast, larger volume silicic eruptions may have transient hydromagmatic events in response to conduit flow dynamics above the magma fragmentation depth. The 1975 Tolbachik volcanoes are reasonably analogous to Quaternary basaltic volcanoes in the Yucca Mountain region and can guide interpretations of their poorly preserved deposits. The youngest basaltic volcanoes near Yucca Mountain have cone deposits characterized by elevated xenolith abundances and distinctive xenolith breccia-bombs, remarkably similar to 1975 Tolbachik deposits. Extrapolation of 1975 Tolbachik data suggests conduits for some Yucca Mountain basaltic volcanoes may have widened locally on the order of 50 m in response to late-stage hydromagmatic events.  相似文献   

15.
We describe the stratigraphy, chronology, and grain size characteristics of the white trachytic tuff (WTT) of Roccamonfina Volcano (Italy). The pyroclastic rock was emplaced between 317 and 230 Ma BP during seven major eruptive events (units A to G) and three minor events (units BC, CD, and DE). These units are separated by paleosol layers and compositionally well-differentiated pyroclastic successions. Stratigraphic control is favored by the occurrence at the base of major units of marker layers. Four WTT units (1 to 4) occur within the central caldera. These are not positively correlated with specific extracaldera units.The source of most of the WTT units was the central caldera. Units B and C were controlled by the western wall of the caldera, whereas units D and E were able to overcome this barrier, spreading symmetrically along the flanks of MC. The maximum pumice size (MP) of units increases with distance from the caldera, whereas the maximum lithic size (ML) decreases. MP and ML of the marker layer of unit D (MKDa–MKDp) do not show any systematic variations with respect to the central caldera. In contrast, the thickness of surge MKDa decreases with distance from the source, and MKDp accumulates to the north of MC probably controlled, respectively, by mobility-transport power and by wind blowing northwards.The grain size characteristics of the WTT deposits are used for classifying the units. There is no systematic variation of the grain size as a function of stratigraphic height either among units or within single units. Large variation of components in subunit E1, with repetitive alternation of pyroclastic flow to surge through fallout vs. surge deposits, suggests that the process of eruption took place in a complex or piecemeal fashion.Pumice concentration zones (PCZ) occur at all WTT levels on the volcano, but they are much thicker and pumice clasts are much larger within the central caldera. These were probably originated by the disruption of lava (flow or dome) to pumice fragments and fine ash due to sudden depressurization and interaction with lake waters of the molten lava. Local basal PCZ are, in some cases, similar to the lapilli-rich “layer 1P” that has been described elsewhere, and may have been deposited from currents transitional between pyroclastic surge and flow. Other basal PCZ formed in response to small undulations in the substrate, or can be originated by fallout. Lenticular PCZ within ignimbrite interiors and tops are interpreted to record marginal pumice levees and pumice rafts, some of which were buried by subsequant pyroclastic flows.Lithic concentration zones (LCZ) also occur at various stratigraphic height within the extracaldera ignimbrites, whereas intracaldera LCZ are absent, probably due to the fact that ignimbrite currents are strongly energetic and erosive near vent. LCZ at the top of basal inversely graded layers are formed by mechanical sieving or dispersive pressure in response to variable velocity gradients and particle concentration gradients (a segregation process). Coarse LCZ and coarse lithic breccias (LB), that reside in the interior or tops of pyroclastic flows and that occur in medial to distal areas, are interpreted to be the result of slugs of lithic-rich debris introduced by vent collapse or rockslides into the moving pyroclastic flows along their flow paths. These LCZ become mixed to varying degrees due to differential densities and velocities relative to the pyroclastic flows (desegregation processes).  相似文献   

16.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   

17.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

18.
Rabaul Caldera is the most recently active (1937–1943) of four adjoining volcanic centres aligned north-south through the northern extremity of eastern New Britain. Geological mapping after the 1983–1985 Rabaul seismic and deformation crisis has partially revealed a long and complex eruption history dominated by numerous explosive eruptions, the largest accompanied by caldera collapse. The oldest exposed eruptives are the basaltic pre-caldera cone Tovanumbatir Lavas K/Ar dated at 0.5 Ma. The dacitic Rabaul Quarry Lavas exposed in the caldera wall and K/Ar dated at 0.19 Ma, are overlain by a sequence of dacitic and andesitic pyroclastic flow and fall deposits. Uplifted coral reef limestones, interbedded within the pyroclastic sequence on the northeast coast, suggest that explosive eruptions in the Rabaul area had commenced prior to the 0.125 Ma last interglacial high sea level stand. The pyroclastic sequence includes the large Boroi Ignimbrites and Malaguna Pyroclastics both 40Ar/39Ar dated at about 0.1 Ma, and the Barge Tunnel Ignimbrite 40Ar/39Ar dated at around 0.04 Ma. Few reliable ages exist for the many younger eruptives. These include Holocene ignimbrites of the latest caldera-forming eruptions—the Raluan Pyroclastics variously dated (14C) at either about 3500 or 7000 yr B.P., and the ca. 1400 yr B.P. Rabaul Pyroclastics. At least eight intracaldera eruptions have occurred since the 1400 yr B.P. collapse, building small pyroclastic and lava cones within the caldera.A major erosional episode is evident as a widespread unconformity in the upper pyroclastic stratigraphy at Rabaul. Lacking relevant radiometric ages, this episode is assumed to have occurred during last glaciation low sea levels and is here arbitarily dated at ca. ?20 ka. At least five, possibly nine, significant ignimbrite eruptions have occurred at Rabaul during the last ?20 ka. The new eruptive history differs considerably from that previously published, which considered ignimbrite eruption and caldera collapse to have first occurred at 3500 yr B.P.Rabaul volcanism has been dominated by two main types: (a) basaltic and basaltic andesite cone building eruptions; and (b) dacitic, and rarely andesitic or rhyolitic, plinian/ignimbrite eruptions of both high- and low-aspect ratio types. The 1400 yr B.P. Rabaul Ignimbrite is a type example of a low-aspect ratio, high-energy, and potentially very damaging eruption. Fine vitric ash deposits, common in the Rabaul pyroclastic sequence, demonstrate the frequent modification of eruptions by external water probably related to early caldera lakes or bays. Interbedding of these fine ashes with plinian pumice lapilli beds suggests that many early eruptions occurred from multiple vents, located in both wet and dry areas.  相似文献   

19.
Fuji volcano is the largest active volcano in Japan, and consists of Ko-Fuji and Shin-Fuji volcanoes. Although basaltic in composition, small-volume pyroclastic flows have been repeatedly generated during the Younger stage of Shin-Fuji volcano. Deposits of those pyroclastic flows have been identified along multiple drainage valleys on the western flanks between 1,300 and 2,000 m a.s.l., and have been stratigraphically divided into the Shin-Fuji Younger pyroclastic flows (SYP) 1 to 4. Downstream debris flow deposits are found which contain abundant material derived from the pyroclastic flow deposits. The new14C ages for SYP1 to SYP4 are 3.2, 3.0, 2.9, and 2.5 ka, respectively, and correspond to a period where explosive summit eruptions generated many scoria fall deposits mostly toward the east. The SYP1 to SYP4 deposits consist of two facies: the massive facies is about 2 m thick and contains basaltic bombs of less than 50 cm in size, scoria lapilli, and fresh lithic basalt fragments supported in an ash matrix; the surge facies is represented by beds 1 to 15 cm thick, consisting mainly of ash with minor amount of fine lapilli. The bombs and scoria are 15 to 30% in volume within the massive facies. The ashes within the SYP deposits consist largely of comminuted basalt lithics and crystals that are derived from the Middle-stage lava flows exposed at the western flanks. SYP1 to SYP4 were only dispersed down the western flanks. The reason for this one-sided distribution is the asymmetric topography of the edifice; the western slopes of the volcano are the steepest (over 34 degrees). Most pyroclastic materials cannot rest stably on the slopes steeper than 33 degrees. Therefore, ejecta from the explosive summit eruptions that fell on the steep slopes tumbled down the slopes and were remobilized as high-temperature granular flows. These flows consisted of large pyroclastics and moved as granular avalanches along the valley bottom. Furthermore, the avalanching flows increased in volume by abrasion from the edifice and generated abundant ashes by the collision of clasts. The large amount of the fine material was presumably available within the transport system as the basal avalanches propagated below the angle of repose. Taking the typical kinetic friction coefficient of small pyroclastic flows, such flows could descend the western flanks where scattered houses are below 1,000 m a.s.l. A similar type of pyroclastic flow could result if explosive summit eruptions occur in the future.Editorial responsibility: R Cioni  相似文献   

20.
The 274 ka “Basalt-Trachytic Tuff of Tuoripunzoli” (TBTT) from Roccamonfina volcano (Roman Region, Italy) consists of a basaltic scoria lapilli fall (Unit A) overlain by a trachytic sequence formed by a surge (Unit B), repetitive pumice lapilli and ash-rich layers both of fallout origin (Unit C) and a pyroclastic flow deposit (Unit D). The TBTT is widespread (40 km2) in the northern sector of the volcano, but limited to a small area on the southern slopes of the main cone. Interpolation between the northern deposits and the latter one yields a minimum depositional area of 123 km2, and an approximate bulk volume of 0.2-0.3 km3. Isopach and isopleth maps are consistent with a source vent within the main caldera of Roccamonfina.Unit A shows a fairly good sorting and a moderate grain size; glass fragments are cuspate and vesicular. Unit B is fine grained and poorly sorted; shards are blocky and nonvesicular. Pumice lapilli of Unit C are moderately sorted and moderately coarse grained. Glass shards are equant and vesicular. Lithic clasts are strongly comminuted to submillimetric sizes. By contrast, the ash-rich internal divisions are very fine grained and poorly sorted. They consist of a mixture of equant shards which are prevailingly blocky and poorly vesicular. Unit D is a massive, poorly sorted, moderately coarse-grained deposit. Glass fragments are nearly equant and slightly or nonvesicular.The TBTT is interpreted as due to eruption of a basaltic magma followed in rapid succession by one trachyte magma. Unit A formed by Subplinian fallout of a moderate, purely magmatic column. Interaction between a trachyte magma and water resulted in eruption of surge Unit B. A high-standing eruption column erupted alternating fallout pumice lapilli and fallout ashes. Pumice lapilli originated prevailingly from the inner part of the eruption column, whereas magma-water interaction on the external parts of the column resulted in ash fallout. The uppermost pyroclastic flow Unit D is interpreted as due to final collapse of the eruption column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号